Skip to main content
Log in

Fractal analysis of shape changes in murine osteoblasts cultured under simulated microgravity

  • COSMIC RADIATION: Sino-Italian Cooperation
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Morphological changes have been reported to occur in cells exposed to microgravity, even if quantitative (i.e., fractal) analysis has been never performed on cell shape. We investigated cell shape as well as cytoskeleton modifications induced by simulated microgravity on murine osteoblasts (MC3T3-E1) growing in vitro by means of fractal analysis. On average, after 48–72 h of exposition to microgravity, osteoblasts display significant changes in shape profile, recovering a more rounded phenotype characterized by larger surface area than controls. More specifically, microgravity enacted the emergence of two distinct morphological phenotypes, one of which characterized by an increase in membrane fractal values, surface area, and roundness. Moreover, osteoblasts exposed to microgravity undergo significant functional changes (inhibited growth proliferation, increased apoptosis, β1-integrin decrease, impaired Akt and Erk phosphorylation) that could likely concur in explaining the observed alteration in bone structure experienced by astronauts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4(2):25–34

    CAS  Google Scholar 

  • Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315(823–829):2004

    Google Scholar 

  • Bizzarri M, Giuliani A (2011) Representing cancer cell trajectories in a phase-space diagram: switching cellular states by biological phase transitions. In: Dehmer M, Emmert-Streib F, Graber A, Salvador A (eds) Applied statistics for network biology: methods in systems biology. Wiley-VCH Verlag GmbH & Co. KGaA, Germany

    Google Scholar 

  • Bizzarri M, Saggese E (2012) Human space flights: facts and dreams. Ann Kinesiol 2(2):103–116

    Google Scholar 

  • Bizzarri M, Giuliani A, Cucina A, D’Anselmi F, Soto AM, Sonnenschein C (2011) Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol 21(3):175–182

    Article  CAS  Google Scholar 

  • Bizzarri M, Pasqualato A, Cucina A, Pasta V (2013a) Physical forces and non linear dynamics mould fractal cell shape. Quantitative morphological parameters and cell phenotype. Histol Histopathol 28(2):155–174

    CAS  Google Scholar 

  • Bizzarri M, Palombo A, Cucina A (2013b) Theoretical aspects of systems biology. Prog Biophys Mol Biol 112(1–2):33–43

    Article  Google Scholar 

  • Cutting JE, Garvin JJ (1987) Fractal curves and complexity. Percept Psicophysiol 42:365–370

    Article  CAS  Google Scholar 

  • Dinicola S, D’Anselmi F, Pasqualato A, Proietti S, Lisi E, Cucina A, Bizzarri M (2011) A systems biology approach to cancer: fractals, attractors, and non-linear dynamics. OMICS 15(3):93–104

    Article  CAS  Google Scholar 

  • Ferreira T, Rasband W (2012) ImageJ user guide IJ 1.46r. http://www.imageJ.org

  • Flusberg DA, Nimaguchi Y, Ingber DE (2001) Cooperative control of Akt phosphorylation, bcl-2 expression and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 12:3087–3094

    Article  CAS  Google Scholar 

  • Gaboyard S, Blanchard MP, Travo BT, Viso M, Sans A, Lehouelleur J (2002) Weightlessness affects cytoskeleton of rat utricular hair cells during maturation in vitro. Neuroreport 13(16):2139–2142

    Article  Google Scholar 

  • Guignandon M, Lafage-Proust MH (2013) http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm

  • Honga D, Chen H-X, Yuc H-Q, Lianga Y, Wanga C, Liand Q-Q, Dengc H-T, Gea R-S (2010) Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res 316:2291–2300

    Article  Google Scholar 

  • Hughes-Fulford M (2002) Physiological effects of microgravity on osteoblast morphology and cell biology. Adv Space Biol Med 8:129–157

    Article  CAS  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32(8):1585–1593

    Article  CAS  Google Scholar 

  • Ingber DE, Tensegrity I (2003) Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  CAS  Google Scholar 

  • Johnson PR (1979) Prolonged weightlessness and calcium loss in man. Acta Astronaut 6:1113–1122

    Article  Google Scholar 

  • Kheradmand F, Werner E, Tremble P, Symons M, Werb Z (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280:898–902

    Article  CAS  Google Scholar 

  • Kondepudi DK, Storm PB (1992) Gravity detection through bifurcation. Adv Space Res 12(1):7–14

    Article  CAS  Google Scholar 

  • Losa GA (2009) The fractal geometry of life. Riv Biol Biol Forum 102(1):29–59

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York

  • Marie PJ, Jones D, Vico L, Zallone A, Hinsenkamp M, Cancedda R (2000) Osteobiology, strain, and microgravity. Part I. Studies at the cellular level. Calcif Tissue Int 67:2–9

    Article  CAS  Google Scholar 

  • Owan I, Burr DB, Turner CH, Qiu J, Tu Y, Onyia JE, Duncan RL (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol 273:C810–C815

    CAS  Google Scholar 

  • Papaseit C, Pchon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA 8(15):8364–8368

    Article  Google Scholar 

  • Patel PMJ, Sykes MC, Platt MO, Boyd NL, Sorescu GP, Xu M, van Loon JJWA, May D, Wang MD, Jo H (2005) Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol 288:C1211–C1221

    Article  Google Scholar 

  • Qian AR, Li D, Han J, Gao X, Di SM, Zhang W, Hu LF, Shang P (2012) Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Trans Biomed Eng 59(5):1374–1380

    Article  CAS  Google Scholar 

  • Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618

    Article  Google Scholar 

  • Smith TG Jr, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology. J Neurosci Methods 69:1123–126. http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm

    Google Scholar 

  • Sytkowski AJ, Davis KL (2001) Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotation wall vessel bioreactor. In Vitro Cell Dev Biol Anim 37:79–83

    Article  CAS  Google Scholar 

  • Tél T (1988) Fractals, multifractals and thermodynamics. Z Naturforsch 43a:1154–1174

    Google Scholar 

  • Usson N, Laroche A, Caillot-Augusseau C, Alexandre L (2001) Vico, cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J 15(11):2036–2038

    Google Scholar 

  • Van Loon JWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39:1161–1165

    Article  Google Scholar 

  • Vico L (2006) What do we know about alteration in the osteoblast phenotype with microgravity? J Musculoskelet Neuronal Interact 6(4):317–318

    CAS  Google Scholar 

  • Vico L, Lafage-Proust MH, Alexandrfe C (1998) Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22:95S–100S

    Article  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by ASI (Italian Space Agency), LIGRA Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Bizzarri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testa, F., Palombo, A., Dinicola, S. et al. Fractal analysis of shape changes in murine osteoblasts cultured under simulated microgravity. Rend. Fis. Acc. Lincei 25 (Suppl 1), 39–47 (2014). https://doi.org/10.1007/s12210-014-0291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0291-3

Keywords

Navigation