Skip to main content
Log in

Gravity sensing by cells: mechanisms and theoretical grounds

  • COSMIC RADIATION: Sino-Italian Cooperation
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Spaceflight technologies have disclosed amazing opportunities to outreach human knowledge and control over the natural world. However, the actual experience of microgravity has become a relevant threat that significantly limits the extent of man permanence in space. Since then, gravity effects on living organisms became a critical field of investigation. Gravity has been proven to affect a wide array of biological functions, interacting at different levels of complexity, from molecules to cells, tissue and the organisms as a whole. However, it is still a matter of investigation if gravity induces direct or indirect effects on cells. The non-equilibrium theory has been proven to explain how biological dissipative structures, like the cytoskeleton, may be sensitive enough to sense gravity change, then transferring the mechano-signal into biochemical pathways. Within that framework, gravity represents an ‘inescapable’ constraint that obliges living beings to adopt only a few configurations among many others. By removing the gravitational field, living structures will be free to recover more degrees of freedom, thus acquiring new phenotypes and new properties. Discoveries on that field are thought to advance our knowledge, providing amazing insights into the biological mechanism underlying physiology as well as many relevant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4:25–34

    CAS  Google Scholar 

  • Alpatov AM, Antipov VV, Tairbekov MG (1992) Biological role of gravity: hypotheses and results of experiments on “Cosmos” biosatellites. Adv Space Res 12:27–32

    CAS  Google Scholar 

  • Barmatz M, Hahn I, Lipa JA, Duncan RV (2007) Critical phenomena in microgravity: past, present and future. Rev Mod Phys 79:1–52. doi:10.1103/RevModPhys.79.1

    CAS  Google Scholar 

  • Becker JL, Souza GR (2013) Using space-based investigations to inform cancer research on Earth. Nat Rev Cancer 13:315–327. doi:10.1038/nrc3507

    CAS  Google Scholar 

  • Belyavskaya NA (1996) Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level. Adv Space Res 17:169–177

    CAS  Google Scholar 

  • Bizzarri M, Giuliani A (2011) Representing cancer cell trajectories in a phase-space diagram: switching cellular states by biological phase transitions. In: Dehmer M, Emmert-Streib F, Graber A, Salvador A (eds) Applied statistics for network biology: methods in systems biology. Wiley, New York, pp 377–403

    Google Scholar 

  • Bizzarri M, Saggese E (2012) Human space flights: facts and dreams. Ann Kinesiol 2:103–116

    Google Scholar 

  • Bizzarri M, Palombo A, Cucina A (2013a) Theoretical aspects of systems biology. Progr Bioph Mol Biol 112:33–43. doi:10.1016/j.pbiomolbio.2013.03.019

    Google Scholar 

  • Bizzarri M, Pasqualato A, Cucina A, Pasta V (2013b) Physical forces and non linear dynamics mould fractal cell shape. Quantitative morphological parameters and cell phenotype. Histol Histopathol 28:155–174

    CAS  Google Scholar 

  • Boonstra J (1999) Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. FASEB J 13:S35–S42

    CAS  Google Scholar 

  • Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G, Meloni MA, Hughes-Fulford M (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19:2020–2022. doi:10.1096/fj.05-3778fje

    CAS  Google Scholar 

  • Brokaw CJ (1997) Mechanical components of motor enzyme function. Biophys J 73:938–951

    CAS  Google Scholar 

  • Burger EH, Klein-Nulend J, Cowin SC (1998) Mechanotransduction in bone, molecular and cellular biology of bone. In: Zaidi M, Bittar EE, Adebanjo OA, Huan CLH (eds) Advances in organ biology. JAI, Stamford, pp 123–136

    Google Scholar 

  • Capriotti AL, Caruso G, Cavaliere C, Foglia P, Bizzarri M, Laganà A (2011) Rapid resolution liquid chromatography/high resolution tandem mass spectrometry to characterize metabolic changes in subjects involved in MARS500 project. Chromatographia 73:S45–S53. doi:10.1007/s10337-010-1880-7

    Google Scholar 

  • Chiu B, Wan JZ, Abley D, Akabutu J (2005) Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity. Acta Astronaut 56:918–922

    Google Scholar 

  • Claassen DE, Spooner BS (1994) Impact of altered gravity on aspects of cell biology. Int Rev Cytol 156:301–373

    CAS  Google Scholar 

  • Cogoli A (1992) Theories and models of biological response to gravity. Adv Space Res 12:1s–2s

    Google Scholar 

  • Cogoli A (ed) (2002) Cell biology and biotechnology in space volume 8 (advances space biology and medicine). Elsevier, Amsterdam

    Google Scholar 

  • Cogoli-Greuter M, Meloni MA, Sciola L, Spano A, Pippia P, Monaco G, Cogoli A (1996) Movements and interactions of leukocytes in microgravity. J Biotechnol 47:279–287

    CAS  Google Scholar 

  • Coinu R, Chiaviello A, Galleri G, Franconi F, Crescenzi E, Palumbo G (2006) Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Lett 580:2465–2470. doi:10.1016/j.febslet.2006.03.078

    CAS  Google Scholar 

  • Crawford-Young SJ (2006) Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol 50:183–191. doi:10.1387/ijdb.052077sc

    Google Scholar 

  • Davis TA, Wiesmann W, Kidwell W, Cannon T, Kerns L, Serke C, Delaplaine T, Pranger A, Lee KP (1996) Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J Leukoc Biol 60:69–76

    CAS  Google Scholar 

  • de Groot RP, Rijken PJ, den Hertog J, Boonstra J, Verkleij AJ, de Laat SW, Kruijer W (1991) Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp Cell Res 197:87–90

    Google Scholar 

  • Delone NL, Antipov VV (1988) Problems of changeability in weightlessness. Kosmicheskaya Biol 22:4–15

    CAS  Google Scholar 

  • Doherty GJ, McMahon HT (2008) Mediation, modulation and consequences of membrane-cytoskeleton interactions. Ann Rev Biophys 37:65–95. doi:10.1146/annurev.biophys.37.032807.125912

    CAS  Google Scholar 

  • Enver T, Pera M, Peterson C, Andrews PW (2009) Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4:387–397. doi:10.1016/j.stem.2009.04.011

    CAS  Google Scholar 

  • Feric M, Brangwynne CP (2013) A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat Cell Biol. doi:10.1038/ncb2830

    Google Scholar 

  • Ferrell EJ, Xiong W (2001) Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11:227–236. doi:10.1063/1.1349894

    CAS  Google Scholar 

  • Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 94:13885–13990

    CAS  Google Scholar 

  • Fujieda S, Mogam Y, Moriyasu K, Mori Y (1999) Non-equilibrium/non-linear chemical oscillation in the virtual absence of gravity. Adv Space Res 23:2057–2063

    CAS  Google Scholar 

  • Fujieda S, Mori Y, Nakazawa A, Mogami Y (2001) Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions. Adv Space Res 28:537–543

    CAS  Google Scholar 

  • Galilei G (1974) Two new sciences (translated by S. Drake). Wisconsin University Press, Madison, pp 109–146

    Google Scholar 

  • Gazenko OG, Ilyin EA (1980) Adaptation to weightlessness and its physiological mechanisms. Izv AN SSSR ser biol 1:5–18

    Google Scholar 

  • Gmunder FK, Kiess M, Sonnenfeld G, Lee J, Cogoli A (1992) Reduced lymphocyte activation in space: role of cell-substratum interactions. Adv Space Res 12:55–61

    CAS  Google Scholar 

  • Grinstein G (1995) Generic scale invariance and self-organized criticality. In: McKane A, Droz M, Vannimenus J, Wolf D (eds) Scale invariance, interfaces, and non-equilibrium dynamics. Plenum Press, New York, pp 261–293

    Google Scholar 

  • Grosse J, Wehland M, Pietsch J, Ma X, Ulbrich C et al (2012) Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. FASEB J 26:639–655. doi:10.1096/fj.11-194886

    CAS  Google Scholar 

  • Guignandon A, Vico L, Alexandre C, Lafage-Proust MH (1995) Shape changes of osteoblastic cells under gravitational variations during parabolic flight–relationship with PGE2 synthesis. Cell Strut Funct 20:369–375

    CAS  Google Scholar 

  • Guignandon A, Usson Y, Laroche N, Lafage-Proust MH, Sabido O, Alexandre C, Vito L (1997) Effects of intermittent or continuous gravitational stresses on cell- matrix adhesion: quantitative analysis of focal contacts in osteoblastic ROS 17/2.8 cells. Exp Cell Res 236:66–75

    CAS  Google Scholar 

  • Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281:F12–F25

    CAS  Google Scholar 

  • Hammond TG, Lewis FC, Goodwin TJ, Linnehan RM, Wolf DA, Hire KP, Campbell WC, Benes E, O’Reilly KC, Globus RK, Kaysen JH (1999) Gene expression in space. Nat Med 5:359

    CAS  Google Scholar 

  • Han Y, Cowin SC, Schaffler MB, Weinbaum S (2004) Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 101:16689–16694. doi:10.1073/pnas.0407429101

    CAS  Google Scholar 

  • Hanke W (1996) Studies of the interaction of gravity with biological membranes using alamethicin doped planar lipid bilayers as a model system. Adv Space Res 17:143–150

    CAS  Google Scholar 

  • Hatton JP, Pooran M, Li CF, Luzzio C, Hughes-Fulford M (2003) A short pulse of mechanical force induces gene expression and growth in MC3T3-El osteoblasts via an ERR l/2 pathway. J Bone Miner Res 18:58–66. doi:10.1359/jbmr.2003.18.1.58

    CAS  Google Scholar 

  • Heidemann SR, Kaech S, Buxbaum RE, Matus A (1999) Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J Cell Biol 145:109–122

    CAS  Google Scholar 

  • Herranz R, Benguria A, Lavan D, Lopez-Vidriero I, Gasset G, Medina F, Van Loon J, Marco R (2010) Spaceflight-related suboptimal conditions can accentuate the altered gravity response of drosophila transcriptome. Mol Ecol 19:4255–4264. doi:10.1111/j.1365-294X.2010.04795.x

    Google Scholar 

  • Herranz R, Larkin OJ, Hill RJ, Lopez-Vidriero I, van Loon JJ, Medina FJ (2013a) Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis. BMC Evol Biol 13:133. doi:10.1186/1471-2148-13-133

    Google Scholar 

  • Herranz R, Manzano AI, van Loon JJ, Christianen PC, Medina FJ (2013b) Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13:217–224. doi:10.1089/ast2012.0883

    CAS  Google Scholar 

  • Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285:C1082–C1090. doi:10.1152/ajpcell.00159.2003

    CAS  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593. doi:10.1016/S0273-1177(03)90399-1

    CAS  Google Scholar 

  • Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    CAS  Google Scholar 

  • Hunter IW, Korenberg MJ (1986) The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cyber 55:135–144

    CAS  Google Scholar 

  • Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599. doi:10.1146/annurev.physiol.59.1.575

    CAS  Google Scholar 

  • Ingber D (1999) How cells (might) sense microgravity. Faseb J 13:S3–S15

    CAS  Google Scholar 

  • Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding GF (1997) Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell Dev Biol Animal 33:459–466

    CAS  Google Scholar 

  • Ko YJ, Zaharias RS, Seabold DA, Lafoon J, Schneider GB (2007) Osteoblast differentiation is enhanced in rotary cell culture simulated microgravity environments. J Prosthodont 16:431–438. doi:10.1111/j.1532-849X.2007.00204.x

    Google Scholar 

  • Kondepudi DK, Prigogine I (1981) Sensitivity of non-equilibrium systems. Physica A 107:1–24

    Google Scholar 

  • Kondepudi DK, Prigogine I (1983) Sensitivity of non-equilibrium chemical systems to gravitational field. Adv Space Res 3:171–176

    CAS  Google Scholar 

  • Kondepudi DK, Storm PB (1992) Gravity detection through bifurcation. Adv Space Res 12:7–14

    CAS  Google Scholar 

  • Kondrachuk AV, Sirenko SP (1996) The theoretical consideration of microgravity effects on a cell. Adv Space Res 17:165–168

    CAS  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). Faseb J 12:1007–1018

    CAS  Google Scholar 

  • Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z (2009) Modeled microgravity cause changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. Protoplasma 238:23–33. doi:10.1007/s00709-009-0068-1

    Google Scholar 

  • Loesberg WA, Walboomers XF, van Loon JJ, Jansen JA (2008) Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography. Cell Motil Cytoskeleton 65:116–129. doi:10.1002/cm.20248

    CAS  Google Scholar 

  • Longo G, Montevil M (2011) From physics to biology by extending criticality and symmetry breakings. Prog Biophys Mol Biol 106:340–347. doi:10.1016/j.pbiomolbio.2011.03.005

    CAS  Google Scholar 

  • Maniotis A, Bojanowski K, Ingber DE (1997a) Mechanical continuity and reversible chromosome disassembly within intact genomes microsurgically removed from living cells. J Cell Biochem 65:114–130

    CAS  Google Scholar 

  • Maniotis A, Chen C, Ingber DE (1997b) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    CAS  Google Scholar 

  • Mesland DAM (1992) Possible actions of gravity on the cellular machinery. Adv Space Res 12:15–25

    CAS  Google Scholar 

  • Meyers VE, Zayzafoon M, Gonda SR, Gathings WE, McDonald JM (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem 93:697–707. doi:10.1002/jcb.20229

    CAS  Google Scholar 

  • Meyers VE, Zayzafoon M, Douglas JT, McDonald JM (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20:1858–1866. doi:10.1359/JBMR.050611

    CAS  Google Scholar 

  • Mijailovich SM, Kojic M, Zivkovic M, Fabry B, Fredberg JJ (2002) A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol 93:1429–1436. doi:10.1152/japplphysiol.00255.2002

    Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68. doi:10.1038/nrm1549

    CAS  Google Scholar 

  • Montgomery PO Jr, Cook JE, Reynolds RC, Paul JS, Hayflick L, Stock D, Schulz WW, Kimsey S, Thirolf RG, Rogers T, Campbell D (1978) The response of single human cells to zero-gravity. In Vitro 14:165–173

    CAS  Google Scholar 

  • Moorman SJ, Shorr AZ (2008) The primary cilium as a gravitational force transducer and a regulator of transcriptional noise. Dev Dyn 237:1955–1959. doi:10.1002/dvdy.21493

    Google Scholar 

  • Nakao H, Mikhailov AS (2010) Turing patterns in network-organized activator-inhibitor systems. Nat Phys 6:544–550. doi:10.1038/nphys1651

    CAS  Google Scholar 

  • Newman SA, Forgas G, Muller GB (2006) Before programs: the physical origination of multicellular forms. Int J Dev Biol 50:289–299. doi:10.1387/ijdb.052049sn

    CAS  Google Scholar 

  • Nicolis G, Prigogine I (1977) Introduction. In self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New York

    Google Scholar 

  • Odde DJ (1997) Estimation of the diffusion-limited rate of microtubule assembly. Biophys J 73:88–96

    CAS  Google Scholar 

  • Pache C, Kühn J, Westphal K, Toy MF, Parent JM, Büchi O, Franco-Obregón A, Depeursinge C, Egli M (2010) Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity. J Biomed Opt 15:026021. doi:10.1117/1.3377960

    Google Scholar 

  • Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci USA 97(15):8364–8368. doi:10.1073/pnas.140029597

    CAS  Google Scholar 

  • Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE (1995) Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 6:1349–1365

    CAS  Google Scholar 

  • Pollard EC (1965) Theoretical studies on living systems in the absence of mechanical stress. J Theor Biol 8:113–123

    CAS  Google Scholar 

  • Portet S, Tuszynski JA, Dixon JM, Sataric MV (2003) Models of spatial and orientational self-organization of microtubules under the influence of gravitational fields. Phys Rev E Stat Nonlin Soft Matter Phys 68:021903

    CAS  Google Scholar 

  • Prodanov L, van Loon JJ, Te Riet J, Jansen JA, Walboomers XF (2012) Nanostructured substrate conformation can decrease osteoblast-like cell dysfunction in simulated microgravity conditions. J Tissue Eng Regen Med. doi:10.1002/term.1600

    Google Scholar 

  • Qian H, Reluga TC (2005) Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch. Phys Rev Lett 94:028101. doi:10.1103/PhysRevLett.94.028101

    Google Scholar 

  • Rijken PJ, Hage WJ, Van Bergen en Henegouwen PM, Verkleij AJ, Boonstra J (1991) Epidermal growth factor induces rapid reorganization of the actin microfilament system in human A43 1 cells. J Cell Sci 100:491–499

    CAS  Google Scholar 

  • Saxena A, Jacobson J, Yamanashi W, Scherlag B, Lamberth J, Saxena B (2003) A hypothetical mathematical construct explaining the mechanism of biological amplification in an experimental model utilizing picoTesla (PT) electromagnetic fields. Med Hypotheses 60:821–839. doi:10.1016/S0306-9877(03)00011-2

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge

  • Schopf JW, Galston AW, Cowing KL (1988) Gravitational biology. In: Exploring the living universe: a strategy for space life sciences. NASA, Washington DC, pp 154–170

  • Shevchenko GV, Kordyum EL (2005) Organization of cytoskeleton during differentiation of gravisensitive root sites under clinorotation. Adv Space Res 35:289–295

    CAS  Google Scholar 

  • Slenzka K, Appel R, Kappel Th, Rahmann H (1996) Influence of altered gravity on brain cellular energy and plasma membrane metabolism of developing lower aquatic vertebrates. Adv Space Res 17:125–128

    CAS  Google Scholar 

  • Ślęzak A, Bryll A, Grzegorczyn S (2006) A numerical study of the hydrodynamic stable concentration boundary layers in a membrane system under microgravitational conditions. J Biol Phys 32:553–562. doi:10.1007/s10867-007-9037-0

    Google Scholar 

  • Snell EH, Helliwell JR (2005) Macromolecular crystallization in microgravity. Rep Prog Phys 68:799–853. doi:10.1088/0034-4885/68/4/r02

    CAS  Google Scholar 

  • Stanley HE, Buldyrev SV, Goldberger AL, Goldberger ZD, Havlin S, Mantegna RN, Ossadnik SM, Peng CK, Simons M (1994) Statistical mechanics in biology: how ubiquitous are long-range correlations? Phys A 205:214–253

    Google Scholar 

  • Stiles PJ, Fletcher DF (2001) The effect of gravity on the rate of a simple liquid-state reaction in a small, unstirred cylindrical vessel. Phys Chem Chem Phys 3:1617–1621. doi:10.1039/B100542L

    CAS  Google Scholar 

  • Tabony J (1994) Morphological bifurcations involving reaction-diffusion processes during microtubule formation. Science 264:245–248

    CAS  Google Scholar 

  • Tabony J, Job D (1990) Spatial structures in microtubular solutions requiring a sustained energy source. Nature 346:448–451

    CAS  Google Scholar 

  • Tabony J, Glade N, Demongeot J, Papaseit C (2002a) Biological self-organization by way of microtubule reaction−diffusion processes. Langmuir 18:7196–7207. doi:10.1021/la0255875

    CAS  Google Scholar 

  • Tabony J, Glade N, Demongeot J, Papaseit C (2002b) Microtubule self-organisation and its gravity dependence. Adv Space Bio Med 8:19–58

    CAS  Google Scholar 

  • Tairbekov MG (1987) Investigation of energy exchange in weightlessness. Kosmicheskaya Biol 21:83–90

    Google Scholar 

  • Tairbekov MG (1990) Positional homeostasis of cell and the problem of morphogenesis in gravity field. Uspekhi Sovremennoy Biologli 109:47–64

    Google Scholar 

  • Tairbekov MG (1996) Physico-chemical characteristics of biomembranes and cell gravisensitivity. Adv Space Res 17:161–164

    CAS  Google Scholar 

  • Tairbekov MG, Parfenov GP (1981) Biological investigations aboard the biosatellite Cosmos-1129. Adv Space Res 1:89–94

    CAS  Google Scholar 

  • Tairbekov MG, Parfenov GP (1983) Experimental and theoretical analysis of the influence of gravity at the cellular level: a review. Adv Space Res 3:153–158

    CAS  Google Scholar 

  • The Proceedings of the Skylab Life Sciences Symposium. Washington DC, National Areonautics and Space Administration (1974) NASA TM-X-58154

  • Todd P (1989) Gravity-dependent phenomena at the scale of the single cell. ASGSB Bull 2:95–113

    CAS  Google Scholar 

  • Todd P, Klaus DM, Stodieck LS, Smith JD, Staehelin LA, Kacena M, Manfredi B, Bukhari A (1998) Cellular responses to gravity: extracellular, intracellular and in-between. Adv Space Res 21:1263–1268

    CAS  Google Scholar 

  • Ulbrich C, Pietsch J, Grosse J, Wehland M et al (2011) Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 28:185–198. doi:10.1159/000331730

    CAS  Google Scholar 

  • Unsworth BR, Lelkes PI (1998) Growing tissues in microgravity. Nature Med 4:901–907

    CAS  Google Scholar 

  • Uva BM, Masini MA, Sturla M, Prato P, Passalacqua M, Giuliani M, Tagliafierro G, Strollo F (2002) Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934:132–139

    CAS  Google Scholar 

  • Vailati A, Cerbino R, Mazzoni S, Takacs CJ, Cannell DS, Giglio M (2011) Fractal fronts of diffusion in microgravity. Nat Commun 2:290. doi:10.1038/ncomms1290

    Google Scholar 

  • van Loon JJWA (2007a) Microgravity and mechanomics. Gravit space. Biol 20:3–18

    Google Scholar 

  • van Loon JJWA (2007b) The gravity environment in space experiments. In: Brinckmann E (ed) Biology in space and life on earth. Effects of space flight on biological systems. Wiley-vch, Verlag, pp 17–32

    Google Scholar 

  • Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafeve F, Karniguian A, Gasset G, Irinopoulou T, Calvo F, Rigaut JP, Schoevaert D (2001) The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. Faseb J 15:1104–1106. doi:10.1096/fj.00-0527fje

    CAS  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nature Rev 7:265–275. doi:10.1038/nrm1890

    CAS  Google Scholar 

  • Wang N, Suo Z (2005) Long-distance propagation of forces in a cell. Biochem Biophys Res Comm 328:1133–1138. doi:10.1016/j.bbrc.2005.01.070

    CAS  Google Scholar 

  • White RJ, Averner M (2001) Humans in space. Nature 409:1115–1118. doi:10.1038/35059243

    CAS  Google Scholar 

  • Zago M, Lacquaniti F (2005) Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth. J Neurophysiol 94:1346–1357. doi:10.1152/jn.00215.2005

    Google Scholar 

  • Zhabotinskii AM (1985) The early period of systematic studies of oscillations and waves in chemical systems. In: Field RJ, Burger M (eds) Oscillations and traveling waves in chemical systems. Wiley, New York, p 1

    Google Scholar 

  • Zhou JX, Brusch L, Huang S (2011) Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS ONE 6:e14752. doi:10.1371/journal.pone.0014752

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by ASI (Italian Space Agency), LIGRA Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Bizzarri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizzarri, M., Cucina, A., Palombo, A. et al. Gravity sensing by cells: mechanisms and theoretical grounds. Rend. Fis. Acc. Lincei 25 (Suppl 1), 29–38 (2014). https://doi.org/10.1007/s12210-013-0281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0281-x

Keywords

Navigation