Skip to main content

Advertisement

Log in

Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

All-solid-state lithium batteries (ASSLBs) have advantages of safety and high energy density, and they are expected to become the next generation of energy storage devices. Sulfide-based solid-state electrolytes (SSEs) with high ionic conductivity and low grain boundary resistance exhibit remarkable practical application. However, the space charge layer (SCL) effect and high interfacial resistance caused by a mismatch with the current commercial oxide cathodes restrict the development of sulfide SSEs and ASSLBs. This review summarizes the research progress on the SCL effect of sulfide SSEs and oxide cathodes, including the mechanism and direct evidence from high performance in-situ characterizations, as well as recent progress on the interfacial modification strategies to alleviate the SCL effect. This study provides future direction to stabilize the high performance sulfide-based solid electrolyte/oxide cathode interface for state-of-the-art ASSLBs and future all-SSE storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [43]. Copyright 2020 Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [45]. Copyright 2020 Wiley. b In-situ interfacial TEM image and electron holography image at different voltages Reproduced with permission from Ref. [44]. Copyright 2020 Wiley. c, d In-situ EIS image on LiNi0.8Co0.1Mn0.1O2 and argyrodite Li6PS5Cl interfaces. Reproduced with permission from Ref. [45]. Copyright 2020 Wiley

Fig. 4

Reproduced with permission from Ref. [47]. Copyright 2020 Springer Nature

Fig. 5

Reproduced with permission from Ref. [59]. Copyright 2020 Elsevier

Fig. 6

Reproduced with permission from Ref. [61]. Copyright 2020 Royal Society of Chemistry

Fig. 7

modified by discontinuous BTO-coated LCO and its theoretical calculations images and corresponding EIS images

Fig. 8

Reproduced with permission from Ref. [63]. Copyright 2020 American Chemical Society. b Schematic illustrations of CoxB fully covered on the NCM cathode surface. Reproduced with permission from Ref. [63]. Copyright 2020 Springer Nature

Similar content being viewed by others

References

  1. Zhang Q, Cao DX, Ma Y et al (2019) Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv Mater 31(44):1901131

    Article  Google Scholar 

  2. Liu W, Li JX, Li WT et al (2020) Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat Commun 11(1):3629

    Article  Google Scholar 

  3. Manthiram A, Yu XW, Wang SF (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  Google Scholar 

  4. Ahmad N, Zhou L, Faheem M et al (2020) Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces 12(19):21548–21558

    Article  Google Scholar 

  5. Zeng ZQ, Murugesan V, Han KS et al (2018) Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat Energy 3(8):674–681

    Article  Google Scholar 

  6. Ge Q, Zhou L, Lian YM et al (2018) Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. Electrochem Commun 97:100–104

    Article  Google Scholar 

  7. Abakumov AM, Fedotov SS, Antipov EV et al (2020) Solid state chemistry for developing better metal-ion batteries. Nat Commun 11(1):4976

    Article  Google Scholar 

  8. Zhou L, Tufail MK, Yang L et al (2020) Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries. Chem Eng J 391:123529

    Article  Google Scholar 

  9. Li Y, Arnold W, Jasinski JB et al (2020) Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries. Electrochim Acta 363:137128

    Article  Google Scholar 

  10. Wang AP, Kadam S, Li H et al (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput Mater 4:15

    Article  Google Scholar 

  11. Wang WP, Zhang J, Chou J et al (2021) Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv Energy Mater 11(2):2000791

    Article  Google Scholar 

  12. Otoyama M, Sakuda A, Tatsumisago M et al (2020) Sulfide electrolyte suppressing side reactions in composite positive electrodes for all-solid-state lithium batteries. ACS Appl Mater Interfaces 12(26):29228–29234

    Google Scholar 

  13. Zhu CB, Usiskin RE, Yu Y et al (2017) The nanoscale circuitry of battery electrodes. Science 358(6369):eaao2808

    Article  Google Scholar 

  14. Tufail MK, Zhou L, Ahmad N et al (2021) A novel air-stable Li7Sb0.05P2.95S10.5I0.5superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem Eng J 407:127149

    Article  Google Scholar 

  15. Zhang J, Li LJ, Zheng C et al (2020) Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries. ACS Appl Mater Interfaces 12(37):41538–41545

    Article  Google Scholar 

  16. Zhang ZR, Zhang JX, Jia HH et al (2020) Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-argyrodite. J Power Sources 450:227601

    Article  Google Scholar 

  17. Zeng Z, Gao D, Yang G et al (2020) Ultrathin interfacial modification of Li-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance batteries. Nanotechnology 31(45):454001

    Article  Google Scholar 

  18. Wenzel S, Randau S, Leichtweiß T et al (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407

    Article  Google Scholar 

  19. Bi ZJ, Zhao N, Ma LN et al (2020) Interface engineering on cathode side for solid garnet batteries. Chem Eng J 387:124089

    Article  Google Scholar 

  20. Chen C, Guo X (2016) Space charge layer effect in solid state ion conductors and lithium batteries: principle and perspective. Acta Chim Slov 63(3):489–495

    Article  Google Scholar 

  21. Umeshbabu E, Zheng BZ, Yang Y (2019) Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem Energy Rev 2(2):199–230

    Article  Google Scholar 

  22. Wu JH, Shen L, Zhang ZH et al (2021) All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem Energy Rev 4(1):101–135

    Article  Google Scholar 

  23. Weiss M, Simon FJ, Busche MR et al (2020) From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces. Electrochem Energy Rev 3(2):221–238

    Article  Google Scholar 

  24. Wagner C (1972) The electrical conductivity of semi-conductors involving inclusions of another phase. J Phys Chem Solids 33(5):1051–1059

    Article  Google Scholar 

  25. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4(11):805–815

    Article  Google Scholar 

  26. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121

    Article  Google Scholar 

  27. Guo XX, Maier J (2009) Ionically conducting two-dimensional heterostructures. Adv Mater 21(25–26):2619–2631

    Article  Google Scholar 

  28. Sata N, Eberman K, Eberl K et al (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815):946–949

    Article  Google Scholar 

  29. Li ZY, Li AJ, Zhang HR et al (2020) Interfacial engineering for stabilizing polymer electrolytes with 4 V cathodes in lithium metal batteries at elevated temperature. Nano Energy 72:104655

    Article  Google Scholar 

  30. Miao XG, Wang HY, Sun R et al (2020) Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy Environ Sci 13(11):3780–3822

    Article  Google Scholar 

  31. Zhu F, Islam MS, Zhou L et al (2020) Single-atom-layer traps in a solid electrolyte for lithium batteries. Nat Commun 11:1828

    Article  Google Scholar 

  32. Culver SP, Koerver R, Zeier WG et al (2019) On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv Energy Mater 9(24):1900626

    Article  Google Scholar 

  33. Cheng Z, Liu M, Ganapathy S et al (2020) Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4(6):1311–1323

    Article  Google Scholar 

  34. Haruyama J, Sodeyama K, Han LY et al (2014) Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater 26(14):4248–4255

    Article  Google Scholar 

  35. Gao B, Jalem R, Ma YM et al (2020) Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme. Chem Mater 32(1):85–96

    Article  Google Scholar 

  36. Braun S, Yada C, Latz A (2015) Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte. J Phys Chem C 119(39):22281–22288

    Article  Google Scholar 

  37. Fingerle M, Buchheit R, Sicolo S et al (2017) Reaction and space charge layer formation at the LiCoO2-LiPON interface: insights on defect formation and ion energy level alignment by a combined surface science-simulation approach. Chem Mater 29(18):7675–7685

    Article  Google Scholar 

  38. Takada K (2018) Progress in solid electrolytes toward realizing solid-state lithium batteries. J Power Sources 394:74–85

    Article  Google Scholar 

  39. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770

    Article  Google Scholar 

  40. Haruta M, Shiraki S, Suzuki T et al (2015) Negligible “negative space-charge layer effects” at oxide-electrolyte/electrode interfaces of thin-film batteries. Nano Lett 15(3):1498–1502

    Article  Google Scholar 

  41. Takada K (2013) Interfacial nanoarchitectonics for solid-state lithium batteries. Langmuir 29(24):7538–7541

    Article  Google Scholar 

  42. Gittleson FS, El Gabaly F (2017) Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett 17(11):6974–6982

    Article  Google Scholar 

  43. Masuda H, Ishida N, Ogata Y et al (2017) Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale 9(2):893–898

    Article  Google Scholar 

  44. Yamamoto K, Iriyama Y, Asaka T et al (2010) Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew Chem Int Ed 49(26):4414–4417

    Article  Google Scholar 

  45. Nomura Y, Yamamoto K, Hirayama T et al (2019) Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface. Angew Chem Int Ed 58(16):5292–5296

    Article  Google Scholar 

  46. Zhang J, Zheng C, Li LJ et al (2020) Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv Energy Mater 10(4):1903311

    Article  Google Scholar 

  47. Wang L, Xie R, Chen B et al (2020) In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat Commun 11(1):5889

    Article  Google Scholar 

  48. Nisar U, Muralidharan N, Essehli R et al (2021) Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater 38:309–328

    Article  Google Scholar 

  49. Yamada H, Tsunoe D, Shiraishi S et al (2015) Reduced grain boundary resistance by surface modification. J Phys Chem C 119(10):5412–5419

    Article  Google Scholar 

  50. Yamada H, Oga Y, Saruwatari I et al (2012) Local structure and ionic conduction at interfaces of electrode and solid electrolytes. J Electrochem Soc 159(4):A380–A385

    Article  Google Scholar 

  51. Agostini M, Aihara Y, Yamada T et al (2013) A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte. Solid State Ion 244:48–51

    Article  Google Scholar 

  52. Nie KH, Sun XR, Wang JY et al (2020) Realizing long-term cycling stability and superior rate performance of 4.5 V-LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. J Power Sources 470:228423

    Article  Google Scholar 

  53. Zhang WB, Weber DA, Weigand H et al (2017) Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces 9(21):17835–17845

    Article  Google Scholar 

  54. Lee YG, Fujiki S, Jung C et al (2020) High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat Energy 5(4):299–308

    Article  Google Scholar 

  55. Zhao Y, Liu M, Lv W et al (2016) Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy 30:1–8

    Article  Google Scholar 

  56. Cao Y, Qi X, Hu K et al (2018) Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 10(21):18270–18280

    Article  Google Scholar 

  57. Zhang J, Lu QW, Fang JH et al (2014) Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl Mater Interfaces 6(20):17965–17973

    Article  Google Scholar 

  58. Ohta N, Takada K, Sakaguchi I et al (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun 9(7):1486–1490

    Article  Google Scholar 

  59. Li XL, Jin LB, Song DW et al (2020) LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem 40:39–45

    Article  Google Scholar 

  60. Xu XX, Takada K, Watanabe K et al (2011) Self-organized core-shell structure for high-power electrode in solid-state lithium batteries. Chem Mater 23(17):3798–3804

    Article  Google Scholar 

  61. Wang CW, Ren FC, Zhou Y et al (2021) Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries. Energy Environ Sci 14(1):437–450

    Article  Google Scholar 

  62. Yada C, Ohmori A, Ide K et al (2014) Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv Energy Mater 4(9):1301416

    Article  Google Scholar 

  63. Cho W, Lim YJ, Lee SM et al (2018) Facile Mn surface doping of Ni-rich layered cathode materials for lithium ion batteries. ACS Appl Mater Interfaces 10(45):38915–38921

    Article  Google Scholar 

  64. Yoon M, Dong YH, Hwang J et al (2021) Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat Energy 6(4):362–371

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by National Natural Science Foundation of China (Nos. 21575015, 21203008, 21975025, and 51772030), the Beijing Nature Science Foundation (No. 2172051), the National Key Research and Development Program of China (No. 2016YFB0100204), and Beijing Outstanding Young Scientists Program (No. BJJWZYJH01201910007023). The project was funded by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renjie Chen or Wen Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zhou, L., Tufail, M.K. et al. Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution. Trans. Tianjin Univ. 27, 423–433 (2021). https://doi.org/10.1007/s12209-021-00294-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-021-00294-8

Keywords

Navigation