Skip to main content
Log in

Preparation of Anisotropic MnO2 Nanocatalysts for Selective Oxidation of Benzyl Alcohol and 5-Hydroxymethylfurfural

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Anisotropic MnO2 nanostructures, including α-phase nanowire, α-phase nanorod, δ-phase nanosheet, α + δ-phase nanowire, and amorphous floccule, were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using different counterions. The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol (BA) and 5-hydroxymethylfurfural (HMF) were evaluated. The effects of micromorphology, phase structure, and redox state on the catalytic activity of MnO2 nanomaterials were investigated. The results showed that the intrinsic catalytic oxidation activity was mainly influenced by the unique anisotropic structure and surface chemical property of MnO2. With one-dimensional and 2D structures exposing highly active surfaces, unique crystal forms, and high oxidation state of Mn, the intrinsic activities for MnO2 catalysts synthesized in pH 1, 5, and 10 solutions (denoted as MnO2-pH1, MnO2-pH5, and MnO2-pH10, respectively) were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF. With a moderate aspect ratio, the α + δ nanowire of MnO2-pH10 exhibited the highest average oxidation state, most abundant active sites, and the best catalytic oxidation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou KB, Li YD (2012) Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed 51(3):602–613

    Google Scholar 

  2. Li Y, Yang XY, Feng Y et al (2012) One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit Rev Solid State Mater Sci 37(1):1–74

    Google Scholar 

  3. Zhang Q, Wang HY, Jia XL et al (2013) One-dimensional metal oxide nanostructures for heterogeneous catalysis. Nanoscale 5(16):7175–7183

    Google Scholar 

  4. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641

    Google Scholar 

  5. Tian N, Zhou ZY, Sun SG et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735

    Google Scholar 

  6. Mostafa S, Behafarid F, Croy JR et al (2010) Shape-dependent catalytic properties of Pt nanoparticles. J Am Chem Soc 132(44):15714–15719

    Google Scholar 

  7. Browne MP, Sofer Z, Pumera M (2019) Layered and two dimensional metal oxides for electrochemical energy conversion. Energy Environ Sci 12(1):41–58

    Google Scholar 

  8. Xu HM, Yan NQ, Qu Z et al (2017) Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review. Environ Sci Technol 51(16):8879–8892

    Google Scholar 

  9. Zheng XH, Li YL, Zhang LY et al (2019) Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Appl Catal B Environ 252:98–110

    Google Scholar 

  10. Chen M, Nikles DE (2002) Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-y Nanoparticles. Nano Lett 2(3):211–214

    Google Scholar 

  11. Bliznyuk V, Singamaneni S, Sahoo S et al (2009) Self-assembly of magnetic Ni nanoparticles into 1D arrays with antiferromagnetic order. Nanotechnology 20(10):105606

    Google Scholar 

  12. Bao NZ, Shen LM, Padhan P et al (2008) Self-assembly and magnetic properties of shape-controlled monodisperse CoFe2O4 nanocrystals. Appl Phys Lett 92(17):173101

    Google Scholar 

  13. Zhang K, Han XP, Hu Z et al (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44(3):699–728

    Google Scholar 

  14. Yao WT, Odegard GM, Huang ZN et al (2018) Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy 48:301–311

    Google Scholar 

  15. Bai BY, Li JH, Hao JM (2015) 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol. Appl Catal B Environ 164:241–250

    Google Scholar 

  16. Hayashi E, Yamaguchi Y, Kamata K et al (2019) Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. J Am Chem Soc 141(2):890–900

    Google Scholar 

  17. Miao L, Wang JL, Zhang PY (2019) Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl Surf Sci 466:441–453

    Google Scholar 

  18. Ma JP, Du ZT, Xu J et al (2011) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. Chemsuschem 4(1):51–54

    Google Scholar 

  19. Xiang TF, Liu XM, Yi P et al (2013) Schiff base polymers derived from 2,5-diformylfuran. Polym Int 62(10):1517–1523

    Google Scholar 

  20. Ma JP, Yu WQ, Wang M et al (2013) Advances in selective catalytic transformation of ployols to value-added chemicals. Chin J Catal 34(3):492–507

    Google Scholar 

  21. Yang ZZ, Deng J, Pan T et al (2012) A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2. Green Chem 14(11):2986

    Google Scholar 

  22. Pal P, Saravanamurugan S (2019) Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts. Chemsuschem 12(1):145–163

    Google Scholar 

  23. Zhang ZH, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47(4):1351–1390

    Google Scholar 

  24. Enache DI, Edwards JK, Landon P et al (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311(5759):362–365

    Google Scholar 

  25. Nie JF, Liu HC (2014) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on manganese oxide catalysts. J Catal 316:57–66

    Google Scholar 

  26. Ke QP, Jin YX, Ruan F et al (2019) Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts. Green Chem 21(16):4313–4318

    Google Scholar 

  27. Liu P, Duan JH, Ye Q et al (2018) Promoting effect of unreducible metal doping on OMS-2 catalysts for gas-phase selective oxidation of ethanol. J Catal 367:115–125

    Google Scholar 

  28. Son YC, Makwana VD, Howell AR et al (2001) Efficient, catalytic, aerobic oxidation of alcohols with octahedral molecular sieves. Angew Chem Int Ed 40(22):4280–4283

    Google Scholar 

  29. Perner A, Holl K, Ilic D et al (2002) A new MnOx cathode material for rechargeable Lithium batteries. Eur J Inorg Chem 2002(5):1108–1114

    Google Scholar 

  30. Chitrakar R, Kanoh H, Kim YS et al (2001) Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2. J Solid State Chem 160(1):69–76

    Google Scholar 

  31. Golden DC, Chen CC, Dixon JB (1986) Synthesis of todorokite. Science 231(4739):717–719

    Google Scholar 

  32. Shen YF, Zerger RP, DeGuzman RN et al (1993) Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science 260(5107):511–515

    Google Scholar 

  33. Luo J, Suib SL (1997) Preparative parameters, magnesium effects, and anion effects in thee crystallization of birnessites. J Phys Chem B 101:10403–10413

    Google Scholar 

  34. Ching S, Roark JL, Suib SL et al (1997) Sol-gel route to the tunneled manganese oxide cryptomelane. Chem Mater 9:750–754

    Google Scholar 

  35. Ching S, Petrovay DJ, Jorgensen ML et al (1997) Sol–gel synthesis of layered birnessite-type manganese oxides. Inorg Chem 36(5):883–890

    Google Scholar 

  36. Zhang N, Cheng FY, Liu JX et al (2017) Rechargeable aqueous zinc–manganese dioxide batteries with high energy and power densities. Nat Commun 8:405

    Google Scholar 

  37. Najafpour MM, Renger G, Hołyńska M et al (2016) Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem Rev 116(5):2886–2936

    Google Scholar 

  38. Shi FJ, Wang F, Dai HX et al (2012) Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene. Appl Catal A Gen 433–434:206–213

    Google Scholar 

  39. Li JM, Qu ZP, Qin Y et al (2016) Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts. Appl Surf Sci 385:234–240

    Google Scholar 

  40. Tang QW, Jiang LH, Liu J et al (2014) Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4(2):457–463

    Google Scholar 

  41. Kakizaki H, Ooka H, Hayashi T et al (2018) Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide. Adv Funct Mater 28(24):1706319

    Google Scholar 

  42. Xu KB, Lin XX, Wang XF et al (2018) Generating more Mn4+ ions on surface of nonstoichiometric MnO2 nanorods via microwave heating for improved oxygen electroreduction. Appl Surf Sci 459:782–787

    Google Scholar 

  43. Wang H, Chen H, Wang Y et al (2019) Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO. Chem Eng J 361:1161–1172

    Google Scholar 

  44. Wang X, Li YD (2003) Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chem Eur J 9(22):5627–5635

    Google Scholar 

  45. DeGuzman RN, Shen YF, Neth EJ et al (1994) Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure. Chem Mater 6(6):815–821

    Google Scholar 

  46. Wang X, Li YD (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem A Eur J 9(1):300–306

    Google Scholar 

  47. Wang AQ, Wang H, Deng H et al (2019) Controllable synthesis of mesoporous manganese oxide microsphere efficient for photo-Fenton-like removal of fluoroquinolone antibiotics. Appl Catal B Environ 248:298–308

    Google Scholar 

  48. Mo SP, Zhang Q, Li JQ et al (2020) Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl Catal B Environ 264:118464

    Google Scholar 

  49. Lee SJ, Gavriilidis A, Pankhurst QA et al (2001) Effect of drying conditions of Au–Mn Co-precipitates for low-temperature CO oxidation. J Catal 200(2):298–308

    Google Scholar 

  50. Xie XF, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45(12):2365–2373

    Google Scholar 

  51. Feng XM, Yan ZZ, Chen NN et al (2013) The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. J Mater Chem A 1(41):12818

    Google Scholar 

  52. Han XW, Li CQ, Liu XH et al (2017) Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx–CeO2 composite catalysts. Green Chem 19(4):996–1004

    Google Scholar 

  53. Liu H, Cao XJ, Wei JN et al (2019) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over Fe2O3-promoted MnO2 catalyst. ACS Sustain Chem Eng 7(8):7812–7822

    Google Scholar 

  54. Xu R, Wang X, Wang DS et al (2006) Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J Catal 237(2):426–430

    Google Scholar 

  55. Zahoor A, Jang HS, Jeong JS et al (2014) A comparative study of nanostructured α and δ MnO2 for Lithium oxygen battery application. RSC Adv 4(18):8973

    Google Scholar 

  56. Liang SH, Teng F, Bulgan G et al (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112(14):5307–5315

    Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21503187) and the “Light of West China” Program of the Chinese Academy of Sciences for the financial support. We also thank Prof. Haichao Liu (College of Chemistry and Molecular Engineering, Peking University, China) for his helpful suggestions and guidance during catalyst characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Song, Y., Liu, X. et al. Preparation of Anisotropic MnO2 Nanocatalysts for Selective Oxidation of Benzyl Alcohol and 5-Hydroxymethylfurfural. Trans. Tianjin Univ. 26, 382–390 (2020). https://doi.org/10.1007/s12209-020-00261-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-020-00261-9

Keywords

Navigation