Skip to main content
Log in

Effect of Non-reactive Powder Particle Properties on Dry Agglomeration in a High Shear Mixer

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The effect of non-reactive powder particle properties on the detergent dry agglomeration process in a high shear mixer was investigated. Three types of micron-scale silica were chosen as the non-reactive fine powders and a semi-solid alkyl ethyl ethoxy sulfate (AES) paste with ultra-high viscosity was chosen as the binder. The granules were characterized using mass-based granule size distribution, scanning electron microcopy, and bulk density tests. The results revealed that powder particle size plays a leading role in agglomeration behavior. A decrease in the median particle size results in enhanced dispersion of silica particles in the AES paste binder droplets, which leads to the formation of uniform granules that are slightly affected by compacting forces. Agglomerate quality, using silica with high oil absorption as well as optimum particle size, was satisfactory, and the product exhibited a smaller median particle size, narrower size distribution, and superior anti-caking capacity under the same liquid-to-solid ratio (L/S).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Davies JF, Knight PC, Travill AW et al (1994) Process for manufacture of detergent powder: EP, EP0215637

  2. Smirani-Khayati N, Falk V, Bardin-Monnier N et al (2009) Binder liquid distribution during granulation process and its relationship to granule size distribution. Powder Technol 195(2):105–112

    Article  Google Scholar 

  3. Tardos GI, Khan MI, Mort PR (1997) Critical parameters and limiting conditions in binder granulation of fine powders. Powder Technol 94(3):245–258

    Article  Google Scholar 

  4. Iveson SM, Litster JD, Ennis BJ (1996) Fundamental studies of granule consolidation Part 1: effects of binder content and binder viscosity. Powder Technol 88(1):15–20

    Article  Google Scholar 

  5. Saleh K, Vialatte L, Guigon P (2005) Wet granulation in a batch high shear mixer. Chem Eng Sci 60(14):3763–3775

    Article  Google Scholar 

  6. Mirza Z, Liu JT, Glocheux Y et al (2015) Effect of impeller design on homogeneity, size and strength of pharmaceutical granules produced by high-shear wet granulation. Particuology 23:31–39

    Article  Google Scholar 

  7. Iveson SM, Litster JD, Hapgood K et al (2001) Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol 117(1–2):3–39

    Article  Google Scholar 

  8. Franceschinis E, Santomaso AC, Trotter A et al (2014) High shear mixer granulation using food grade binders with different thickening power. Food Res Int 64:711–717

    Article  Google Scholar 

  9. Borchers G (2005) Design and manufacturing of solid detergent products. J Surfactants Deterg 8(2):123–128

    Article  Google Scholar 

  10. Reynolds GK, Biggs CA, Salman AD et al (2004) Non-uniformity of binder distribution in high-shear granulation. Powder Technol 140(3):203–208

    Article  Google Scholar 

  11. Tan MXL, Hapgood KP (2011) Foam granulation: binder dispersion and nucleation in mixer-granulators. Chem Eng Res Des 89(5):526–536

    Article  Google Scholar 

  12. Balashanmugam M, Cheong YS, Alam Z et al (2016) Dispersion of a semi-solid binder in a moving powder bed during detergent agglomeration. Chem Eng Res Des 110:32–42

    Article  Google Scholar 

  13. Chitu TM, Oulahna D, Hemati M (2011) Wet granulation in laboratory-scale high shear mixers: effect of chopper presence, design and impeller speed. Powder Technol 206(1–2):34–43

    Article  Google Scholar 

  14. Tan BM, Loh ZH, Soh JL et al (2014) Distribution of a viscous binder during high shear granulation—sensitivity to the method of delivery and its impact on product properties. Int J Pharm 460(1–2):255–263

    Article  Google Scholar 

  15. Badawy SI, Narang AS, Lamarche K et al (2012) Mechanistic basis for the effects of process parameters on quality attributes in high shear wet granulation. Int J Pharm 439(1–2):324

    Article  Google Scholar 

  16. Chitu TM, Oulahna D, Hemati M (2011) Wet granulation in laboratory scale high shear mixers: effect of binder properties. Powder Technol 206(1–2):25–33

    Article  Google Scholar 

  17. Björn IN, Jansson A, Karlsson M et al (2005) Empirical to mechanistic modelling in high shear granulation. Chem Eng Sci 60(14):3795–3803

    Article  Google Scholar 

  18. Knight PC, Seville JPK, Wellm AB et al (2001) Prediction of impeller torque in high shear powder mixers. Chem Eng Sci 56(15):4457–4471

    Article  Google Scholar 

  19. Schaefer T, Taagegaard B, Thomsen LJ et al (1993) Melt pelletization in a high shear mixer. V. Effects of apparatus variables. Eur J Pharm Sci 1(3):133–141

    Article  Google Scholar 

  20. Kristensen HG, Holm P, Schaefer T (1985) Mechanical properties of moist agglomerates in relation to granulation mechanisms. Part I. Deformability of moist, densified agglomerates. Powder Technol 44(3):227–237

    Article  Google Scholar 

  21. Keningley ST, Knight PC, Marson AD (1997) An investigation into the effects of binder viscosity on agglomeration behaviour. Powder Technol 91(2):95–103

    Article  Google Scholar 

  22. Johansen A, Schaefer T (2001) Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer. Eur J Pharm Sci 14(2):135–147

    Article  Google Scholar 

  23. Börner M, Michaelis M, Siegmann E et al (2016) Impact of impeller design on high-shear wet granulation. Powder Technol 295:261–271

    Article  Google Scholar 

  24. Schaefer T (1996) Melt pelletization in a high shear mixer. VI. Agglomeration of a cohesive powder. Int J Pharm 132(1–2):221–230

    Article  Google Scholar 

  25. Johansen A, Schaefer T (2001) Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer. Eur J Pharm Sci 12(3):297–309

    Article  Google Scholar 

  26. Pietsch W (2008) Chapter 6. Industrial applications of size enlargement by agglomeration. In: Agglomeration in industry: occurrence and applications. Wiley, Germany, pp 59–478. https://doi.org/10.1002/9783527619795.ch6

  27. Balashanmugam M, Cheong YS, Hounslow MJ et al (2015) Semi-solid paste binder dispersion in a moving powder bed. Proc Eng 102:626–633

    Article  Google Scholar 

  28. Li J, Tao L, Buckley D et al (2012) Effect of physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach toward understanding high-shear wet granulation process, part 3: effect of binder rheological properties. J Pharm Sci 101(5):1877–1887

    Article  Google Scholar 

  29. Leuenberger H (1982) Granulation, new techniques. Pharm Acta Helv 57(3):72–82

    Google Scholar 

  30. Hancock BC, York P, Rowe RC (1994) An assessment of substrate-binder interactions in model wet masses. 1: mixer torque rheometry. Int J Pharm 102(1–3):167–176

    Article  Google Scholar 

  31. Schaefer T (2001) Growth mechanisms in melt agglomeration in high shear mixers. Powder Technol 117(1–2):68–82

    Article  Google Scholar 

  32. Kristensen HG, Holm P, Jaegerskou A et al (1984) Granulation in high speed mixers. Part 4: effect of liquid saturation on the agglomeration. Pharmazeutische Industrie 46:760–768

    Google Scholar 

  33. Mort PR (2005) Scale-up of binder agglomeration processes. Powder Technol 150(2):86–103

    Article  Google Scholar 

  34. Adetayo AA, Litster JD, Pratsinis SE et al (1995) Population balance modelling of drum granulation of materials with wide size distribution. Powder Technol 82(1):37–49

    Article  Google Scholar 

  35. Tapper GI, Lindberg NO (1986) The granulation of some lactose qualities with different particle size distributions in a domestic-type mixer. Acta Pharmaceutica Suecica 23(1):47–56

    Google Scholar 

  36. Iveson SM, Litster JD (1998) Fundamental studies of granule consolidation. Part 2: quantifying the effects of particle and binder properties. Powder Technol 99(3):243–250

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Procter & Gamble Technology (Beijing) Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leping Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Feng, B., Zhao, G. et al. Effect of Non-reactive Powder Particle Properties on Dry Agglomeration in a High Shear Mixer. Trans. Tianjin Univ. 24, 442–452 (2018). https://doi.org/10.1007/s12209-017-0108-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-017-0108-4

Keywords

Navigation