Skip to main content
Log in

Design and Experiments of Ultrasound Image-Guided Multi-DOF Robot System for Brachytherapy

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

To implant radioactive seeds through a needle precisely and safely, a novel multi-DOF surgical robotic system is presented in this paper for percutaneous prostate intervention through the patient’s perineum under real-time ultrasound image guidance. The proposed robot, which is designed with 9-DOF, consists of a 3-DOF automatic location platform for position adjustment, 2-DOF for automatic ultrasonic probe adjustment mounted with electromagnetic trackers, and 4-DOF for manually adjusting the guided template. Meanwhile, a new registration method based on the quaternion algorithm and least square method is developed, and the needle insertion is performed under the real-time guidance of a navigation system. Furthermore, the robot system has undergone some preliminary experiments with a laser tracker to evaluate the repeatability and accuracy of the robot system. The location error of the puncture needle tip can be controlled under 0.7 mm in air for the whole robotic system. The acquired results endorse the precision of the robot system for prostate seed implantation brachytherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Van Gellekom MPR, Moerland MA, Wijrdeman HK et al (2004) Quality of permanent prostate implants using automated delivery with seedSelectron™ versus manual insertion of RAPID Strands™. Radiother Oncol 73(1):49–56

    Article  Google Scholar 

  2. van Gellekom MPR, Moerland MA, Battermann JJ et al (2004) MRI-guided prostate brachytherapy with single needle method: a planning study. Radiother Oncol 71(3):327–332

    Article  Google Scholar 

  3. Buzurovic I, Podder TK, Yu Y (2010) Prediction control for brachytherapy robotic system. J Robot 2010. doi:10.1155/2010/581840

  4. Buzurovic I, Podder TK, Yu Y (2012) Robotic systems for radiation therapy. INTECH Open Access Publisher, Rijeka (Janeza Trdine 9, Croatia)

    Book  Google Scholar 

  5. Meltsner MA, Ferrier NJ, Thomadsen BR (2007) Observations on rotating needle insertions using a brachytherapy robot. Phys Med Biol 52(19):6027–6037

    Article  Google Scholar 

  6. Fichtinger G, Fiene JP, Kennedy CW et al (2008) Robotic assistance for ultrasound-guided prostate brachytherapy. Med Image Anal 12(5):535–545

    Article  Google Scholar 

  7. Bruyère F, Ayoub J, Arbeille P (2011) Use of a telerobotic arm to perform ultrasound guidance during renal biopsy in transplant recipients: a preliminary study. J Endourol 25:231–234

    Article  Google Scholar 

  8. Bassan H, Patel RV, Moallem M (2006) A novel manipulator for prostate brachytherapy: design and preliminary results. IFAC Proc Vol 39(16):30–35

    Article  Google Scholar 

  9. Ho HSS, Mohan P, Lim ED et al (2009) Robotic ultrasound-guided prostate intervention device: system description and results from phantom studies. Int J Med Robot Comput Assist Surg 5(1):51–58

    Article  Google Scholar 

  10. Long JA, Hungr N, Baumann M et al (2012) Development of a novel robot for transperineal needle based interventions: focal therapy, brachytherapy and prostate biopsies. J Urol 188(4):1369–1374

    Article  Google Scholar 

  11. Bax J, Smith D, Bartha L et al (2011) A compact mechatronic system for 3D ultrasound guided prostate interventions. Med Phys 38(2):1055–1069

    Article  Google Scholar 

  12. Fitzpatrick JM (2010) The role of registration in accurate surgical guidance. Proc Inst Mech Eng [H] 224(5):607–622

    Article  Google Scholar 

  13. Wiles AD, Peters TM (2009) Real-time estimation of FLE statistics for 3-D tracking with point-based registration. IEEE Trans Med Imaging 28(9):1384–1398

    Article  Google Scholar 

  14. Stein D, Monnich H, Raczkowsky J et al (2009) Automatic and hand guided self-registration between a robot and an optical tracking system. In: 14th international conference on advanced robotics (ICAR 2009). Munich, Germany, 2009

  15. Gerber N, Gavaghan KA, Bell BJ et al (2013) High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 60(4):960–968

    Article  Google Scholar 

  16. Deguchi D, Feuerstein M, Kitasaka T et al (2012) Real-time marker-free patient registration for electromagnetic navigated bronchoscopy: a phantom study. Int J Comput Assist Radiol Surg 7(3):359–369

    Article  Google Scholar 

  17. Zhang S, Jiang S, Yang Z et al (2015) 2D ultrasound and 3D MR image registration of the prostate for brachytherapy surgical navigation. Medicine 94(40):e1643

    Article  Google Scholar 

  18. Wallner K, Blasko JC, Dattoli M (2001) Prostate brachytherapy made complicated. Smartmedicine Press, Seattle

    Google Scholar 

  19. Zhang H, Banovac F, Lin R et al (2006) Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput Aided Surg 11(3):127–136

    Article  Google Scholar 

  20. Leotta DF (2004) An efficient calibration method for freehand 3-D ultrasound imaging systems. Ultrasound Med Biol 30(7):999–1008

    Article  Google Scholar 

  21. Bharat S, Kung C, Dehghan E et al (2014) Electromagnetic tracking for catheter reconstruction in ultrasound-guided high-dose-rate brachytherapy of the prostate. Brachytherapy 13(6):640–650

    Article  Google Scholar 

  22. Yu Y, Podder T, Zhang Y et al (2006) Robot-assisted prostate brachytherapy. In: 9th International conference on medical image computing and computer-assisted intervention. Copenhagen, Denmark, 2006, pp 41–49

  23. Najafi M, Abolmaesumi P, Rohling R (2015) Single-camera closed-form real-time needle tracking for ultrasound-guided needle insertion. Ultrasound Med Biol 41(10):2663–2676

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Technology and Development Program of the Tianjin Municipal and Technology Commission (No. 14ZCDZGX00490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Yang, Y., Yang, Z. et al. Design and Experiments of Ultrasound Image-Guided Multi-DOF Robot System for Brachytherapy. Trans. Tianjin Univ. 23, 479–487 (2017). https://doi.org/10.1007/s12209-017-0067-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-017-0067-9

Keywords

Navigation