Skip to main content
Log in

Passivity degradation of nuclear materials in reduced sulfur environments: A review

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on pH and temperature. Experimental data show that solution pH, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuclear Power in China[EB/OL]. http://www.worldnuclear.org/info/Country-Profiles/Countries-A-F/China—Nuclear-Power/. 2016-04.

  2. Pressurized Water Reactors[EB/OL]. http://www.nrc.gov/reactors/pwrs.html. 2015-01-15.

  3. Xia D H, Luo J L, Gao Z M et al. Monitoring the diffusion layer during passive film breakdown on Alloy 800 with digital holography [J]. Acta Metallurgica Sinica(English Letters), 2015, 28(9): 1170–1174.

    Article  Google Scholar 

  4. Pandey M D, Datla S, Tapping R L et al. The estimation of lifetime distribution of Alloy 800 steam generator tubing [J]. Nuclear Engineering and Design, 2009, 239(10): 1862–1869.

    Article  Google Scholar 

  5. Zhu R K, Luo J L. Investigation of stress-enhanced surface reactivity on Alloy 800 using scanning electrochemical microscopy [J]. Electrochemistry Communications, 2010, 12(12): 1752–1755.

    Article  Google Scholar 

  6. Xia D H, Song S Z, Zhu R K et al. A mechanistic study on thiosulfate-enhanced passivity degradation of Alloy 800 in chloride solutions [J]. Electrochimica Acta, 2013, 111(6): 510–525.

    Article  Google Scholar 

  7. Xia D H, Zhu R K, Behnamian Y et al. pH effect on sulfurinduced passivity degradation of Alloy 800 in simulated crevice chemistries [J]. Journal of the Electrochemical Society, 2014, 161(4): C201–C214.

    Article  Google Scholar 

  8. Liu X H, Wu X Q, Han E H. Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water [J]. Electrochimica Acta, 2013, 108: 554–565.

    Article  Google Scholar 

  9. Xia D H, Sun Y F, Fan H Q. Characterization of passive film formed on 304 SS in simulated alkaline water chemistries containing sulfur at 300 °C [J]. Transactions of Tianjin University, 2015, 21(6): 554–561.

    Article  Google Scholar 

  10. Lu B T, Tian L P, Zhu R K et al. Effects of dissolved Ca2+ and Mg2+on passivity of UNS N08800 alloy in simulated crevice chemistries with and without Pb contamination at 300°C [J]. Corrosion Science, 2015, 100: 1–11.

    Article  Google Scholar 

  11. Xia D H, Sun Y F, Shen C et al. A mechanistic study on sulfur-induced passivity degradation on Alloy 800 in simulated alkaline crevice chemistries at temperatures ranging from 21°C to 300°C [J]. Corrosion Science, 2015, 100: 504–516.

    Article  Google Scholar 

  12. Luo B, Xia D H. Characterization of pH effect on corrosion resistance of nuclear steam generator tubing alloy by in-situ scanning electrochemical microscopy [J]. Acta Physico-Chimica Sinica, 2014, 30(1): 59–66.

    Google Scholar 

  13. Xia D H, Yang L X. A mechanistic study on semiconductivity conversion of passive films under varying sulfate to chloride concentration ratios [J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1465–1473.

    Google Scholar 

  14. Huang M. Test Plan for ACR-1000 Crevice Chemistry Experiments[R]. Atomic Energy of Canada Ltd, 2008.

    Google Scholar 

  15. Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3 [J]. Corrosion, 2004, 60(2): 115–180.

    Article  Google Scholar 

  16. Choudhary L, Macdonald D D, Alfantazi A. Role of thiosulfate in the corrosion of steels: A review [J]. Corrosion, 2015, 71(9): 1147–1168.

    Article  Google Scholar 

  17. Bailar J C, Emeleus H J, Nyholm R et al. Comprehensive Inorganic Chemistry[M]. Pergamon Press, Oxford, 1973.

    Google Scholar 

  18. Xia D H, Luo J L. Corrosion behavior of Alloy 690 in simulated alkaline water chemistries containing sulfur at 300°C [J]. Acta Physico-Chimica Sinica, 2015, 31(3): 467–475.

    MathSciNet  Google Scholar 

  19. Xia D H, Luo J L. Passivity degradation of Alloy 800 in simulated crevice chemistries [J]. Transactions of Tianjin University, 2015, 21(3): 234–243.

    Article  MathSciNet  Google Scholar 

  20. Marcus P, Protopopoff E. Potential-pH diagrams for sulfur and oxygen adsorbed on chromium in water [J]. Journal of the Electrochemical Society, 1997, 144(5): 1586–1590.

    Article  Google Scholar 

  21. Marcus P, Protopopoff E. Potential-pH diagrams for adsorbed species: Application to sulfur adsorbed on iron in water at 25°C and 300°C [J]. Journal of the Electrochemical Society, 1990, 137(9): 2709–2712.

    Article  Google Scholar 

  22. Marcus P, Protopopoff E. Potential pH diagrams for sulfur and oxygen adsorbed on nickel in water at 25°C and 300°C [J]. Journal of the Electrochemical Society, 1993, 140(6): 1571–1575.

    Article  Google Scholar 

  23. Marcus P, Protopopoff E. Thermodynamics of thiosulfate reduction on surfaces of iron, nickel and chromium in water at 25°C and 300°C [J]. Corrosion Science, 1997, 39(9): 1741–1752.

    Article  Google Scholar 

  24. Marcus P. Corrosion Mechanisms in Theory and Practice [M]. 3rd Edition. CRC Press Inc, 2011.

    Book  Google Scholar 

  25. Belo M D, Hakiki N E, Ferreira M G S. Semiconducting properties of passive films formed on nickel-base alloys type Alloy 600: Influence of the alloying elements [J]. Electrochimica Acta, 1999, 44(14): 2473–2481.

    Article  Google Scholar 

  26. Weingartner H, Franck E U. Supercritical water as a solvent [J]. Angewandte Chemie-International Edition, 2005, 44(18): 2672–2692.

    Article  Google Scholar 

  27. Xia D H, Zhu R K, Behnamian Y et al. Understanding the interaction of thiosulfate with Alloy 800 in aqueous chloride solutions using SECM [J]. Journal of Electroanalytical Chemistry, 2015, 744: 77–84.

    Article  Google Scholar 

  28. Fu C W, Wang J H, Gao Z M et al. Corrosion process detection of tinplate in deaerated functional beverage by EIS[J]. Transactions of Tianjin University, 2013, 19(4): 235–240.

    Article  Google Scholar 

  29. Xia D H, Song S Z, Wang J H et al. Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data [J]. Transactions of Tianjin University, 2012, 18(1): 15–20.

    Article  Google Scholar 

  30. Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise(EN): Review of signal processing methods for identifying corrosion forms [J]. Corrosion Engineering, Science and Technology, 2015: DOI10.1179/1743278215Y.0000000057.

    Google Scholar 

  31. Xia D H, Behnamian Y. Electrochemical noise: A review of experimental setup, instrumentation and DC removal [J]. Russian Journal of Electrochemistry, 2015, 51(7): 593–601.

    Article  Google Scholar 

  32. Li J, Kong W, Zheng H et al. Portable 4-channel electrochemical noise test system [J]. Transactions of Tianjin University, 2014, 20(2): 144–150.

    Article  Google Scholar 

  33. Shi J B, Xia D H, Wang J H et al. Degradation process of coated tinplate by phase space reconstruction theory [J]. Transactions of Tianjin University, 2013, 19(2): 92–97.

    Article  Google Scholar 

  34. Xia D H, Wang H H, Wang K et al. A novel electrochemical noise sensor applied to detect food safety [J]. Russian Journal of Electrochemistry, 2014, 50(6): 599–602.

    Article  Google Scholar 

  35. Macdonald D D, Sharifi-Asl S. Volt equivalent diagrams as a means of displaying the electrochemical thermodynamics of the sulfur-water system [J]. Corrosion Science, 2014, 81: 102–109.

    Article  Google Scholar 

  36. Xia D H, Fan H Q, Yang L X et al. Semiconductivity conversion of passive films on Alloy 800 in chloride solutions containing various concentrations of thiosulfate [J]. Journal of the Electrochemical Society, 2015, 162(9): C482–C486.

    Article  MathSciNet  Google Scholar 

  37. Thomas A E. Investigation of thiosulfate adsorption on 316 stainless steel in neutral solutions by radioactive labeling, electrochemistry, and auger electron spectroscopy [J]. Journal of the Electrochemical Society, 1995, 142(2): 476–484.

    Article  Google Scholar 

  38. Xia D H, Behnamian Y, Feng H N et al. Semiconductivity conversion of Alloy 800 in sulphate, thiosulphate, and chloride solutions [J]. Corrosion Science, 2014, 87: 265–277.

    Article  Google Scholar 

  39. Xia D H, Behnamian Y, Yang L et al. Semiconductivity of steam generator tubing alloys in simulated crevice chemistries containing lead and sulphur [J]. Corrosion Engineering, Science and Technology, 2016, 51(1): 37–50.

    Article  Google Scholar 

  40. Xia D H, Behnamian Y, Chen X Y et al. A mechanistic study of sulfur-induced passivity degradation of Alloy 800 in a simulated alkaline crevice environment at 300°C [J]. Journal of Solid State Electrochemistry, 2015, 19(12): 3567–3578.

    Article  Google Scholar 

  41. Rahman M M, Czaun M, Takafuji M et al. Synthesis, selfassembling properties, and atom transfer radical polymerization of an alkylated L-phenylalanine-derived monomeric organogel from silica: A new approach to prepare packing materials for high-performance liquid chromatography[J]. Chemistry-A European Journal, 2008, 14(4): 1312–1321.

    Article  Google Scholar 

  42. McCafferty E. A surface charge model of corrosion pit initiation and of protection by surface alloying [J]. Journal of the Electrochemical Society, 1999, 146(8): 2863–2869.

    Article  Google Scholar 

  43. Ha H Y, Kwon H S. Effects of pH levels on the surface charge and pitting corrosion resistance of Fe [J]. Journal of the Electrochemical Society, 2012, 159(9): C416–C421.

    Article  Google Scholar 

  44. Baes Charles F, Mesmer Robert E. The Hydrolysis of Cations[M]. Wiley, USA, 1976.

    Google Scholar 

  45. Tsai W T, Wu T F. Pitting corrosion of Alloy 690 in thiosulfate-containing chloride solutions [J]. Journal of Nuclear Materials, 2000, 277(2/3): 169–174.

    Article  Google Scholar 

  46. Newman R C, Isaacs H S, Alman B. Effects of sulfur compounds on the pitting behavior of type 304 stainless steel in near-neutral chloride solutions [J]. Corrosion, 1982, 38(5): 261–265.

    Article  Google Scholar 

  47. Roberge R. Effect of the nickel content in the pitting of stainless-steels in low chloride and thiosulfate solutions [J]. Corrosion, 1988, 44(5): 274–280.

    Article  Google Scholar 

  48. Faichuk M G, Ramamurthy S, Lau W M. Electrochemical behaviour of Alloy 600 tubing in thiosulphate solution [J]. Corrosion Science, 2011, 53(4): 1383–1393.

    Article  Google Scholar 

  49. Zhang W, Carcea A G, Newman R C. Pitting of steamgenerator tubing alloys in solutions containing thiosulfate and sulfate or chloride [J]. Faraday Discussions, 2015, 180: 233–249.

    Article  Google Scholar 

  50. Frankel G, Thornton G, Street S et al. Localised corrosion: General discussion [J]. Faraday Discussions, 2015, 180: 381–414.

    Article  Google Scholar 

  51. Kuang W, Wu X, Han E H et al. Effect of nickel ion from autoclave material on oxidation behaviour of 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science, 2011, 53(3): 1107–1114.

    Article  Google Scholar 

  52. Kirillov P L. Supercritical water cooled reactors [J]. Thermal Engineering, 2008, 55(5): 361–364.

    Article  Google Scholar 

  53. Brunner G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes [J]. The Journal of Supercritical Fluids, 2009, 47(3): 373–381.

    Article  Google Scholar 

  54. Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: A review [J]. Journal of Supercritical Fluids, 2004, 29(1/2): 1–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahai Xia  (夏大海).

Additional information

Supported by the National Basic Research Program of China(“973” Program, No. 2014CB046805), National Natural Science Foundation of China(No. 51131007, No. 51371124), Natural Science Foundation of Tianjin(No. 14JCYBJC17700) and the Open-Ended Fund of the Key Laboratory of Nuclear Materials and Safety Assessment(Institute of Metal Research, Chinese Academy of Sciences, China)(No. 2016NMSAKF02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Wang, Z., Sun, Y. et al. Passivity degradation of nuclear materials in reduced sulfur environments: A review. Trans. Tianjin Univ. 22, 189–201 (2016). https://doi.org/10.1007/s12209-016-2811-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-2811-y

Keywords

Navigation