Skip to main content
Log in

Multichannel blind CT image restoration via variable splitting and alternating direction method

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Computed tomography (CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 dB in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Souidene W, Abed-Meraim K, Beghdadi A. A new look to multichannel blind image deconvolution[J]. IEEE Transactions on Image Processing, 2009, 18(18): 1487–1500.

    Article  MathSciNet  Google Scholar 

  2. Cerutti-Maori D, Sikaneta I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(51): 560–572.

    Article  Google Scholar 

  3. Kourogiorgas C I, Panagopoulos A D. Outage performance of dual branch diversity techniques in broadband fixed wireless access networks[J]. IET Communications, 2014, 8(8): 1648–1653.

    Article  Google Scholar 

  4. Kuwamura S, Azuma Y, Miura N et al. Multiframe blind deconvolution applied to diverse shift-and-add images of an astronomical object[J]. Optical Review, 2014, 21(21): 9–16.

    Article  Google Scholar 

  5. Li D L, Mersereau R M, Simske S. Blind image deconvolution through support vector regression[J]. IEEE Transactions on Neural Networks, 2007, 18(18): 931–935.

    Article  Google Scholar 

  6. Figueiredo M A T, Bioucas-Dias J M. Restoration of Poissonian images using alternating direction optimization[J]. IEEE Transactions on Image Processing, 2010, 19(19): 3133–3145.

    Article  MathSciNet  Google Scholar 

  7. Xu J Y, Taguchi K, Tsui B M W. Statistical projection completion in X-ray CT using consistency conditions[J]. IEEE Transactions on Medical Imaging, 2010, 29(29): 1528–1540.

    Google Scholar 

  8. Liao H Y, Ng M K. Blind deconvolution using generalized cross-validation approach to regularization parameter estimation[J]. IEEE Transactions on Image Processing, 2011, 20(20): 670–680.

    Article  MathSciNet  Google Scholar 

  9. Zhang H C, Wipf D, Zhang Y N. Multi-observation blind deconvolution with an adaptive sparse prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(36): 1628–1643.

    Article  Google Scholar 

  10. Tzikas D G, Likas C L, Galatsanos N P. Variational Bayesian sparse kernel-based blind image deconvolution with student's-t priors[J]. IEEE Transactions on Image Processing, 2009, 18(18): 753–764.

    Article  MathSciNet  Google Scholar 

  11. Babacan S D, Wang J N, Molina R et al. Bayesian blind deconvolution from differently exposed image pairs[J]. IEEE Transactions on Image Processing, 2010, 19(19): 2874–2888.

    Article  MathSciNet  Google Scholar 

  12. Li W, Zhang J, Dai Q H. Robust blind motion deblurring using near-infrared flash image[J]. Journal of Visual Communication and Image Representation, 2013, 24(24): 1394–1413.

    Article  Google Scholar 

  13. Belekos S P, Galatsanos N P, Katsaggelos A K. Maximum a posteriori video super-resolution using a new multichannel image prior[J]. IEEE Transactions on Image Processing, 2010, 19(19): 1451–1464.

    Article  MathSciNet  Google Scholar 

  14. Humphrey D, Taubman D. A filtering approach to edge preserving MAP estimation of images[J]. IEEE Transactions on Image Processing, 2011, 20(20): 1234–1248.

    Article  MathSciNet  Google Scholar 

  15. Zhang L J, Li D M, Su W et al. Research on adaptive optics image restoration algorithm by improved expectation maximization method[J]. Abstract and Applied Analysis, 2014: 781607.

    Google Scholar 

  16. Sanches J M, Nascimento J C, Marques J S. Medical image noise reduction using the Sylvester-Lyapunov equation[J]. IEEE Transactions on Image Processing, 2008, 17(17): 1522–1539.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lam E Y. Blind bi-level image restoration with iterated quadratic programming[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54(54): 52–56.

    Article  Google Scholar 

  18. Wang Y, Dai Q H, Cai Q et al. Blind deconvolution subject to sparse representation for fluorescence microscopy[J]. Optics Communications, 2013, 286: 60–68.

    Article  Google Scholar 

  19. Bilal M, Hussain A, Jaffar M A et al. Estimation and optimization based ill-posed inverse restoration using fuzzy logic[J]. Multimedia Tools and Applications, 2014, 69(69): 1067–1087.

    Article  Google Scholar 

  20. Zuo Z Y, Zhang T X, Lan X et al. An adaptive non-local total variation blind deconvolution employing split Bregman iteration[J]. Circuits Systems and Signal Processing, 2013, 32(32): 2047–2421.

    MathSciNet  Google Scholar 

  21. Szolgay D, Sziranyi T. Optimal stopping condition for iterative image deconvolution by new orthogonality criterion[J]. Electronics Letters, 2011, 47(47): 442–444.

    Article  Google Scholar 

  22. Lee S H, Park H M, Hwang S Y. Motion deblurring using edge map with blurred/noisy image pairs[J]. Optics Communications, 2012, 285(285): 1777–1786.

    Article  Google Scholar 

  23. Wen Y W, Liu C Q, Yip A M. Fast splitting algorithm for multiframe total variation blind video deconvolution[J]. Applied Optics, 2010, 49(49): 2761–2768.

    Article  Google Scholar 

  24. Michailovich O V. An iterative shrinkage approach to totalvariation image restoration[J]. IEEE Transactions on Image Processing, 2011, 20(20): 1281–1299.

    Article  MathSciNet  Google Scholar 

  25. Wang S, Liu Z W, Dong W S et al. Total variation based image deblurring with nonlocal self-similarity constraint[J]. Electronics Letters, 2011, 47(47): 916–918.

    Article  Google Scholar 

  26. Sun Y S, Zhang L Y, Zhang J et al. Neural network blind equalization algorithm applied in medical CT image restoration[J]. Mathematical Problems in Engineering, 2013, 2013: 743546.

    Google Scholar 

  27. Bradshaw A P, Taubman D S, Todd M J et al. Augmented active surface model for the recovery of small structures in CT[J]. IEEE Transactions on Image Processing, 2013, 22(22): 4394–4406.

    Article  MathSciNet  Google Scholar 

  28. Hung N, Fessler J A. Fast X-Ray CT image reconstruction using a linearized augmented Lagrangian method with ordered subsets[J]. IEEE Transactions on Medical Imaging, 2015, 34(34): 388–399.

    Google Scholar 

  29. Sroubek F, Milanfar P. Robust multichannel blind deconvolution via fast alternating minimization[J]. IEEE Transactions on Image Processing, 2012, 21(21): 1687–1700.

    Article  MathSciNet  Google Scholar 

  30. Mallat S. A Wavelet Tour of Signal Processing[M]. Academic Press, New York, USA, 2008.

    Google Scholar 

  31. Xie S L, Rahardja S. Alternating direction method for balanced image restoration[J]. IEEE Transactions on Image Processing, 2012, 21(21):4557-4567.

    Google Scholar 

  32. Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting[J]. Multiscale Modeling & Simulation, 2005, 4(4): 1168–1200.

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang J F, Yin W T, Zhang Y et al. A fast algorithm for edge-preserving variational multichannel image restoration[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 569–592.

    Article  MathSciNet  MATH  Google Scholar 

  34. Afonso M V, Bioucas-Dias J M, Figueiredo M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(19): 2345–2356.

    Article  MathSciNet  Google Scholar 

  35. Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE Transactions on Image Processing, 2011, 20(20): 681–695.

    Article  MathSciNet  Google Scholar 

  36. Sroubek F, Flusser J. Multichannel blind deconvolution of spatially misaligned images[J]. IEEE Transactions on Image Processing, 2005, 14(14): 874–883.

    Article  MathSciNet  Google Scholar 

  37. Harikumar G, Bresler Y. Perfect blind restoration of images blurred by multiple filters: Theory and efficient algorithms[J]. IEEE Transactions on Image Processing, 1999, 8(8): 202–219.

    Article  Google Scholar 

  38. Panci G, Campisi P, Colonnese S et al. Multichannel blind image deconvolution using the Bussgang algorithm: Spatial and multiresolution approaches[J]. IEEE Transactions on Image Processing, 2003, 12(12): 1324–1337.

    Article  MathSciNet  MATH  Google Scholar 

  39. Yusra A Y A N, Der C S. Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI[J]. International Journal of Scientific and Engineering Research, 2012, 3(3): 1–5.

    Google Scholar 

  40. Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(13): 600–612.

    Article  Google Scholar 

  41. Zhu X, Milanfar P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content[J]. IEEE Transactions on Image Processing, 2010, 19(19): 3116–3132.

    MathSciNet  Google Scholar 

  42. Wang G, Vannier M W, Skinner M W et al. Spiral CT image deblurring for cochlear implantation[J]. IEEE Transactions on Medical Imaging, 1998, 17(17): 251–262.

    Article  Google Scholar 

  43. Ma J H, Huang J, Fang Q J et al. Low-dose computed tomography image restoration using previous normal-dose scan[J]. Medical Physics, 2011, 38(38): 5713–5731.

    Article  Google Scholar 

  44. Xu W, Mueller K. Efficient low-dose CT artifact mitigation using an artifact-matched prior scan[J]. Medical Physics, 2012, 39(39): 4748–4760.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyi Zhang  (张立毅).

Additional information

Supported by the National Natural Science Foundaton of China(No. 61340034), China Postdoctoral Science Foundation(No.2013M530873), the Research Program of Application Foundation and Advanced Technology of Tianjin (No. 13JCYBJC15600).

Sun Yunshan, born in 1980, male, Dr, Associate Prof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, L., Zhang, H. et al. Multichannel blind CT image restoration via variable splitting and alternating direction method. Trans. Tianjin Univ. 21, 524–532 (2015). https://doi.org/10.1007/s12209-015-2667-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-015-2667-6

Keywords

Navigation