Skip to main content
Log in

Dynamic temperature gradient and unfalsified control approach for machine tool thermal error compensation

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this work, a novel machine tool thermal error modeling method based on dynamic temperature gradient is proposed, and a thermal error compensation method based on unfalsified control is developed. The dynamic temperature gradient is used to optimize the locations of temperature measuring points on the machine tool. Real-time compensation for the thermal error can be achieved using the developed compensation method by establishing the correlations between dynamic temperature gradient and thermal error in the machine tool. Different from traditional model-based methods, the developed compensation approach does not rely on an accurate model of the thermal error but instead uses online input/output data to adaptively select the best controller at any moment, thereby improving thermal error prediction accuracy and robustness. The effectiveness of the developed thermal error compensation method is demonstrated on a turning center, where the spindle thermal error is compensated during the manufacturing of 120 inner bore parts and 120 shaft parts. After compensation using the proposed approach, thermal errors are reduced from 27 ώm to 9 ώm for the inner bore parts and from 31 ώm to 11 ώm for the shaft parts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li et al., A review on spindle thermal error compensation in machine tools, Int. J. Mach. Tools Manuf., 95 (2015) 20–38.

    Article  Google Scholar 

  2. J. Bryan, International status of thermal error research, Annals of the CIRP, 39 (2) (1990) 645–656.

    Article  Google Scholar 

  3. M. Weck and P. M. Keown, Reduction and compensation of thermal error in machine tools, Annals of the CIRP, 44 (2) (1995) 589–598.

    Article  Google Scholar 

  4. J. Yang, J. Yuan and J. Ni, Thermal error mode analysis and robust modeling for error compensation on a CNC turning center, Int. J. Mach. Tools Manuf., 39 (1999) 1367–1381.

    Article  Google Scholar 

  5. J. H. Huang, T. T. Ngo and C. C. Wang, An inverse method for estimating heat sources in a high speed spindle, Appl. Therm. Eng., 105 (2016) 65–76.

    Article  Google Scholar 

  6. C. Ma et al., Simulation and experimental study on the thermally induced deformations of high-speed spindle system, Appl. Therm. Eng., 86 (2015) 251–268.

    Article  Google Scholar 

  7. M. D. Brouwer et al., Combined explicit finite and discrete element methods for rotor bearing dynamic modeling, Tribol. Trans., 58 (2) (2015) 300–315.

    Article  Google Scholar 

  8. T. Liu et al., Power matching based dissipation strategy onto spindle heat generations, Appl. Therm. Eng., 113 (2017) 499–507.

    Article  Google Scholar 

  9. C. Zhang, F. Gao and L. Yan, Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature, Precis. Eng., 47 (2017) 231–238.

    Article  Google Scholar 

  10. K. Liu et al., Modeling and compensation for spindle’s radial thermal drift error on a vertical machining center, Int. J. Mach. Tools Manuf., 105 (2016) 58–67.

    Article  Google Scholar 

  11. X. Zhu, S. Xiang and J. Yang, Novel thermal error modeling method for machining centers, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 229 (8) (2015) 1500–1508.

    Article  Google Scholar 

  12. J. Yang et al., Thermal error modeling and compensation for a high-speed motorized spindle, Int. J. Adv. Manuf. Technol., 77 (5-8) (2015) 1005–1017.

    Article  Google Scholar 

  13. J. Yang et al., Thermal error compensation on a computer numerical control machine tool considering thermal tilt angles and cutting tool length, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 229 (1) (2015) 78–97.

    Article  Google Scholar 

  14. Y. Zhang, J. Yang and H. Jiang, Machine tool thermal error modeling and prediction by grey neural network, Int. J. Adv. Manuf. Technol., 59 (9-12) (2012) 1065–1072.

    Article  Google Scholar 

  15. S. Xiang, H. Lu and J. Yang, Thermal error prediction method for spindles in machine tools based on a hybrid model, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 229 (1) (2015) 130–140.

    Article  Google Scholar 

  16. H. Liu, E. Miao, X. Zhuang and X. Wei, Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm, Precision Engineering, 51 (2018) 169–175.

    Article  Google Scholar 

  17. Y. Hong and N. Jun, Dynamic modeling for machine tool thermal error compensation, Journal of Manufacturing Science and Engineering, 5 (125) (2003) 245–254.

    Google Scholar 

  18. H. J. Pahk and S. W. Lee, Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error, Int. J. Adv. Manuf. Technol., 20 (7) (2002) 487–494.

    Article  Google Scholar 

  19. J. Helvoortvan, B. Jagerde and M. Steinbuch, Direct data-driven recursive controller unfalsification with analytic update, Automatica, 43 (12) (2007) 2034–2046.

    Article  MathSciNet  Google Scholar 

  20. J. Helvoortvan, B. Jagerde and M. Steinbuch, Data-driven multivariable controller design using ellipsoidal unfalsified control, Systems and Control Letters, 57 (9) (2008) 759–762.

    Article  MathSciNet  Google Scholar 

  21. G. Battistelli et al., Stability of unfalsified adaptive switching control in noisy environments, IEEE Transactions on Automatic Control, 55 (10) (2010) 2424–2429.

    Article  MathSciNet  Google Scholar 

  22. S. Baldi et al., Multi-model unfalsified adaptive switching supervisory control, Automatica, 46 (2) (2010) 249–259.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Key R&D Program of China (No. 2018YFB1701204), National Natural Science Foundation of China (No. 51975372), and Shanghai Civil-Military Integration Project (No. 2016-63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-chun Du.

Additional information

Recommended by Editor Hyung Wook Park

Zheng-chun Du is an Associate Professor at the School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China. He received his Ph.D. in Mechanical Engineering from Southeast University. His research interests include error measurement, modeling, and compensation of machine tools, precision measurement, and processing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Xd., Du, Zc., Ge, Gy. et al. Dynamic temperature gradient and unfalsified control approach for machine tool thermal error compensation. J Mech Sci Technol 34, 319–331 (2020). https://doi.org/10.1007/s12206-019-1232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-1232-y

Keywords

Navigation