Skip to main content
Log in

Dynamic relaxation method for nonlinear buckling analysis of moderately thick FG cylindrical panels with various boundary conditions

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Using new approach proposed by Dynamic relaxation (DR) method, buckling analysis of moderately thick Functionally graded (FG) cylindrical panels subjected to axial compression is investigated for various boundary conditions. The mechanical properties of FG panel are assumed to vary continuously along the thickness direction by the simple rule of mixture and Mori-Tanaka model. The incremental form of nonlinear formulations are derived based on First-order shear deformation theory (FSDT) and large deflection von Karman equations. The DR method combined with the finite difference discretization technique is employed to solve the incremental form of equilibrium equations. The critical mechanical buckling load is determined based on compressive load-displacement curve by adding the incremental displacements in each load step to the displacements obtained from the previous ones. A detailed parametric study is carried out to investigate the influences of the boundary conditions, rule of mixture, grading index, radius-to-thickness ratio, length-to-radius ratio and panel angle on the mechanical buckling load. The results reveal that with increase of grading index the effect of radius-to-thickness ratio on the buckling load decreases. It is also observed that effect of distribution rules on the buckling load is dependent to the type of boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Duc and H. V. Tung, Nonlinear response of pressureloaded functionally graded cylindrical panels with temperature effects, Compos. Struct., 92 (2010) 1664–1672.

    Article  Google Scholar 

  2. S. Yamada and J. G. A. Croll, Buckling behavior of pressure loaded cylindrical panels, J. Eng. Mech., 115 (2) (1989) 327–344.

    Article  Google Scholar 

  3. B. Geier and G. Singh, Some simple solutions for buckling loads of thin and moderately thick cylindrical shells and panels made of laminated composite material, Aerospace Sci. Tech., 1 (1997) 47–63.

    Article  MATH  Google Scholar 

  4. Z. X. Lei, L. W. Zhang and K. M. Liew, Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method, Composite Part B, 84 (2016) 211–221.

    Article  Google Scholar 

  5. L. W. Zhang, Z. G. Song and K. M. Liew, Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow, Comput. Methods Appl. Mech. Engrg., 300 (2016) 427–441.

    Article  MathSciNet  Google Scholar 

  6. Z. X. Lei, L. W. Zhang and K. M. Liew, Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates, Int. J. Mech. Sci., 99 (2015) 208–217.

    Article  Google Scholar 

  7. L. W. Zhang and K. M. Liew, Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates, Comput. Methods Appl. Mech. Engrg., 295 (2015) 219–239.

    Article  MathSciNet  Google Scholar 

  8. L. W. Zhang, Z. G. Song and K. M. Liew, Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method, Compos. Struct., 128 (2015) 165–175.

    Article  Google Scholar 

  9. L. W. Zhang and K. M. Liew, Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach, Compos. Struct., 132 (2015) 974–983.

    Article  Google Scholar 

  10. Z. X. Lei, L. W. Zhang and K. M. Liew, Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method, Compos. Struct., 127 (2015) 245–259.

    Article  Google Scholar 

  11. P. Zhu, L. W. Zhang and K. M. Liew, Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos. Struct., 107 (2014) 298–314.

    Article  Google Scholar 

  12. L. W. Zhang, K. M. Liew and J. N. Reddy, Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates, Comput. Methods Appl. Mech. Engrg., 300 (2016) 593–610.

    Article  MathSciNet  Google Scholar 

  13. H. S. Shen and H. Wang, Thermal postbuckling of FGM cylindrical panels resting on elastic foundations, Aerospace Sci. Tech., 38 (2014) 9–19.

    Article  Google Scholar 

  14. L. W. Zhang, P. Zhu and K. M. Liew, Thermal buckling of functionally graded plates using a local Kriging meshless method, Compos. Struct., 108 (2014) 472–492.

    Article  Google Scholar 

  15. L. W. Zhang, W. C. Cui and K. M. Liew, Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges, Int. J. Mech. Sci., 103 (2015) 9–21.

    Article  Google Scholar 

  16. L. W. Zhang, Z. G. Song and K. M. Liew, State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory, Compos. Struct., 134 (2015) 989–1003.

    Article  Google Scholar 

  17. L. W. Zhang, Z. X. Lei and K. M. Liew, Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach, Composite Part B, 75 (2015) 36–46.

    Article  Google Scholar 

  18. L. W. Zhang, K. M. Liew and J. N. Reddy, Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression, Comput. Methods Appl. Mech. Engrg., 298 (2016) 1–28.

    Article  MathSciNet  Google Scholar 

  19. L. W. Zhang, D. Huang and K. M, Liew, An element-free IMLS-Ritz method for numerical solution of threedimensional wave equations, Comput. Methods Appl. Mech. Engrg., 297 (2015) 116–139.

    Article  MathSciNet  Google Scholar 

  20. L. W. Zhang, D. M. Li and K. M. Liew, An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method, Eng. Anal. Bound Elem., 54 (2015) 39–46.

    Article  MathSciNet  Google Scholar 

  21. K. M. Liew, X. Zhao and Y. Y. Lee, Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads, Composite Part B, 43 (2012) 1621–1630.

    Article  Google Scholar 

  22. X. Zhao and K. M. Liew, A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels, Comput. Mech., 45 (2010) 297–310.

    Article  MATH  Google Scholar 

  23. X. Zhao and K. M. Liew, An element-free analysis of mechanical and thermal buckling of functionally graded conical shell panels, Int. J. Numer. Methods Eng., 86 (2011) 269–285.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. R. Ovesy and J. Fazilati, Parametric instability analysis of moderately thick FGM cylindrical panels using FSM, Comput. Struct., 108 (2012) 135–143.

    Article  Google Scholar 

  25. Z. X. Lei, L. W. Zhang, K. M. Liew and J. L. Yu, Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method, Compos Struct., 113 (2014) 328–338.

    Article  Google Scholar 

  26. S. Pradyumna and J. N. Bandyopadhyay, Free vibration and buckling of functionally graded shell panels in thermal environments, Int. J. Struct. Stab Dyn., 10 (2010) 1031–1053.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. V. Dung and L. K. Hoa, Nonlinear analysis of buckling and postbuckling for axially compressed functionally graded cylindrical panels with the poisson’s ratio varying smoothly along the thickness, Vietnam J. Mech., 34 (2012) 27–44.

    Google Scholar 

  28. A. Ranjbaran, M. R. Khoshravan and M. Kharazi, Buckling analysis of sandwich plate using layerwise theory, J. Mech. Sci. Tech., 28 (6) (2014) 2769–2777.

    Article  Google Scholar 

  29. H. S. Shen and H. Wang, Nonlinear bending of FGM cylindrical panels resting on elastic foundations in thermal environments, Euro J. Mech-A/Solids, 49 (2015) 49–59.

    Article  MathSciNet  Google Scholar 

  30. H. S. Shen, Nonlinear thermal bending of FGM cylindrical panels resting on elastic foundations under heat conduction, Compos. Struct., 113 (2014) 216–224.

    Article  Google Scholar 

  31. H. S. Shen and H. Wang, Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments, Compos. Part B, 60 (2014) 167–177.

    Article  Google Scholar 

  32. H. S. Shen, Postbuckling analysis of axially-loaded functionally graded cylindrical panels in thermal environment, Int. J. Solids Struct., 39 (2002) 5991–6010.

    Article  MATH  Google Scholar 

  33. H. S. Shen and A. Y. T. Leung, Postbuckling of pressureloaded functionally graded cylindrical panels in thermal environments, J. Eng. Mech. ASCE, 129 (2003) 414–425.

    Article  Google Scholar 

  34. T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta. Metall, 21 (1973) 571–574.

    Article  Google Scholar 

  35. B. Klusemann and B. Svendsen, Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks, Technische Mechanik, 30 (4) (2010) 374–386.

    MATH  Google Scholar 

  36. A. S. Day, An introduction to Dynamic Relaxation, The Eng., 219 (1965) 218–221.

    Google Scholar 

  37. P. Underwood, Dynamic Relaxation in Computational Methods for Transient Analysis, Chapter 5, North-Holland, Amsterdam (1983).

    Google Scholar 

  38. L. C. Zhang, M. Kadkhodayan and Y. W. Mai, Development of the maDR method, Comput. Struct., 52 (1) (1994) 1–8.

    Article  MATH  Google Scholar 

  39. M. E. Golmakani and M. Kadkhodayan, Large deflection analysis of circular and annular FGM plates under thermomechanical loadings with temperature-dependent properties, Compos. Part B, 42 (4) (2011) 614–625.

    Article  Google Scholar 

  40. Abaqus. Ver 6.10-1, Dassualt Systems Inc. (2010).

  41. P. Khazaeinejad and M. M. Najafizadeh, Mechanical buckling of cylindrical shells with varying material properties, J. Mech. Eng. Sci., 224 (2010) 1551–1557.

    Article  Google Scholar 

  42. H. V. Tung and N. D. Duc, Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions, Appl. Math. Modell, 38 (2013) 2848–2866.

    Article  MathSciNet  Google Scholar 

  43. M. E. Golmakani and M. Kadkhodayan, Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories, Compos. Struct., 93 (2011) 973–982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Golmakani.

Additional information

Recommended by Associate Editor Kyeongsik Woo

Mohammad Esmaeil Golmakani is an Assistant Professor in Mechanical Engineering at Islamic Azad University of Mashhad, Iran. He received his Ph.D., M.Sc. and B.Sc. degrees from Ferdowsi University of Mashhad, Iran. His main research interests focus on Mechanics of Advanced Materials, Nanomechanics and Elasticity.

Mohammad Naser Sadraee Far is currently M.Sc. student in Mechanical Engineering at Islamic Azad University of Mashhad, Iran. His research interests are Nanomechanics, computational mechanics and composites structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmakani, M.E., Sadraee Far, M.N. & Moravej, M. Dynamic relaxation method for nonlinear buckling analysis of moderately thick FG cylindrical panels with various boundary conditions. J Mech Sci Technol 30, 5565–5575 (2016). https://doi.org/10.1007/s12206-016-1125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-1125-2

Keywords

Navigation