Skip to main content
Log in

Pressure waves in bubbly liquids

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

It is well known that sound propagation in liquid media is strongly affected by the presence of gas bubbles that interact with sound and in turn affect the medium. An explicit form of a wave equation in a bubbly liquid medium was obtained in this study. Using the linearized wave equation and the Keller-Miksis equation for bubble wall motion, a dispersion relation for the linear pressure wave propagation in bubbly liquids was obtained. It was found that attenuation of the waves in bubbly liquid occurs due to the viscosity and the heat transfer from/to the bubble. In particular, at the lower frequency region, the thermal diffusion has a considerable affect on the frequencydependent attenuation coefficients. The phase velocity and the attenuation coefficient obtained from the dispersion relation are in good agreement with the observed values in all sound frequency ranges from kHz to MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Silberman, Sound velocity and attenuation in bub bly mixtures measured in standing wave tubes, Journal of Acoustical Society of America, 29 (1957) 925–933.

    Article  Google Scholar 

  2. C. E. Brennen, Fundamentals of Multi phase Flow, Cambridge University Press (2005).

    MATH  Google Scholar 

  3. L. L. Foldy, The multiple scattering waves, Physical Review, 67 (1945) 107–119.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. L. Carstensen and L. L. Foldy, Propagation of sound through a liquid containing bubbles, Journal of Acoustical Society of America, 19 (1947) 481–501.

    Article  Google Scholar 

  5. F. F. Fox, S. R. Curley and G. S. Larson, Phase velocity and absorption measurements in water containing air bubbles, Journal of Acoustical Society of America, 27 (1955) 534–539.

    Article  Google Scholar 

  6. K. W. Commender and A. Prosperetti, Linear pressure waves in bubbly liquids: Comparison between theory and experiments, Journal of Acoustical Society of America, 85 (1989) 732–746.

    Article  Google Scholar 

  7. K. Ando, T. Colonius and C. E. Brennen, Improve ment of acoustic theory of ultrasonic waves in dilute bubbly liquids, Journal of Acoustical Society of America, 126 (2009) EL69–EL74.

    Article  Google Scholar 

  8. K. Ando, T. Colonius and C. E. Brennen, Numerical simulation of shock propagation in a polydisperse bubbly liquid, International Journal of Multiphase Flow, 37 (2011) 596–608.

    Article  Google Scholar 

  9. Z. Ye and L. Ding, Acoustic dispersion and attenuation relations in bubbly mixture, Journal of Acoustical Society of America, 98 (1995) 1629–1636.

    Article  Google Scholar 

  10. L. van Wijngaarden, On equations of motion for mixtures of liquid and gas bubbles, Journal of Fluid Mechanics, 33 (1968) 465–474.

  11. J. B. Keller and M. Miksis, Bubble oscillations of large amplitude, Journal of Acoustical Society of America, 68 (1980) 628–633.

    Article  MATH  Google Scholar 

  12. S. G. Kargl, Effective medium approach to linear acoustics in bubbly liquids, Journal of Acoustical Society of America, 111 (2002) 168–173.

    Article  Google Scholar 

  13. S. Mahmood, Y. Yoo, J. Oh and H. Kwak, Hydrodynamic approach to multibubble sonoluminescence, Ultrasonic Sonochemistry, 21 (2014) 1512–1518.

    Article  Google Scholar 

  14. R. E. Caflisch, M. J. Miksis, G. C. Papanicolaou and L. Ting, Effective equations for wave propagation in bubbly liquids, Journal of Fluid Mechanics, 153 (1985) 259–273.

    Article  MATH  Google Scholar 

  15. R. T. Lahey, R. P. Taleyarkhan, R. L. Nigmatulin and I. S. Akhatov, Sonolumineacence and the search for sonofusion, Advances in Heat Transfer, 39 (2006) 1–168.

    Article  Google Scholar 

  16. C. C. Wu and P. H. Roberts, Shock-wave propagation in a sonoluminescing gas bubble, Physical Review Letters, 70 (1993) 3424–3427.

    Article  Google Scholar 

  17. H. Kwak and H. Yang, An aspect of sonoluminescence fro hydrodynamic theory, Journal of Physical Society of Japan, 64 (1995) 1980–1992.

    Article  Google Scholar 

  18. M.-C. Chu, The homologous contraction of a sonoluminescing bubble, Physical Review Letters, 76 (1996) 4632–4635.

    Article  Google Scholar 

  19. H. Lin, B. D. Storey and A. J. Szeri, Intially riven inhomogeneities in violently collapsing bubble: the validity of the Rayleigh-Plesset equation, Journal of Fluid Mechanics, 452 (2002) 145–162.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Kim, H. Kwak and J. H. Kim, Moleculr dynamis simulation of collapsing phase for a sonoluminescing gas buble in sulfuric acid solutions: A comparative study with theoretical results, Journal of Physical Society of Japan, 76 (2007) 024301.

    Article  Google Scholar 

  21. R. L. Panton, Incompressible Flow, Third Edition, John Wiley & Sons, Inc., New Jersey (2005).

    MATH  Google Scholar 

  22. W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics, Robert E. Krieger Publishing Co., New York (1965).

    Google Scholar 

  23. T. Theofanous, L. Biasi and H. S. Isbin, A theoretical study on bubble growth in constant and time-dependant pressure fields, Chemical Engineering Science, 24 (1969) 885–897.

    Article  Google Scholar 

  24. H. Kwak, S. Oh and C. Park, Bubble dynamics on the evolving bubble formed from the droplet at the superheat limit, International Journal of Heat and Mass Transfer, 38 (1995) 1709–1718.

    Article  MATH  Google Scholar 

  25. A. A. Prosperetti, Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids, Journal of Acoustical Society of America, 61 (1977) 17–27.

    Article  Google Scholar 

  26. T. G. Leighton, The Acoustic Bubble, Academic Press, London (1994) 178.

    Google Scholar 

  27. C. Devin, Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water, Journal of Acoustical Society of America, 31 (1959) 1654–1667.

    Article  Google Scholar 

  28. S. A. Cheyne, C. T. Stebbings and R. A. Roy, Phase velocity measurements in bubbly liquids using a fiber optic laser interferometer, Journal of Acoustical Society of America, 97 (1995) 1621–1624.

    Article  Google Scholar 

  29. I. S. Kol’tsova, L. O. Krynskii, I. G. Mikhalov and I. E. Pokrovskaya, Attenuation of ultrasonic waves in lowviscosity liquids containing gas bubbles, Soviet Physics Acoustics, 25 (1979) 409–413.

    Google Scholar 

  30. K. Ando, T. Colonius and C. E. Brennen, Numerical simulation of shock propagation in a polydisperse bubbly liquid, International Journal of Multiphase Flow, 37 (2011) 596–608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Young Kwak.

Additional information

Recommended by Guest Editor Gihun Son and Hyoung-Gwon Choi

Shahid Mahmood received B.Sc. Engr. (Mechanical) from University of Engineering and Technology, Lahore, Pakistan in 2003 and M.Sc. Engr. (Nuclear Power) from NED University of Engineering and Technology, Karachi, Pakistan in 2005. He joined M.E. Department, Chung-Ang University, Korea in Sep.-2012 and is currently Ph.D. student there. His research interests are in bubble dynamics and sonoluminescence phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, S., Kwak, HY. Pressure waves in bubbly liquids. J Mech Sci Technol 30, 3935–3943 (2016). https://doi.org/10.1007/s12206-016-0805-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0805-2

Keywords

Navigation