Skip to main content
Log in

Flow structures around a butterfly-shaped low-aspect-ratio wing

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, we numerically investigate three-dimensional flow structures around a butterfly-shaped low-aspect-ratio wing and their effect on the aerodynamic force at the Reynolds number of 1000 based on the wing chord length and free-stream velocity. When the angle of attack is less than 10°, the flow is steady and fully attached to the upper-wing surface, by which the lift force increases almost linearly with the angle of attack. As the angle of attack further increases, the flow around the wing becomes unsteady and contains the leading-edge, trailing-edge, wing-tip, and hairpin vortices. At these angles of attack, the drag force increases rapidly with increasing angle of attack due to massive separation at the leading edge, but the lift force increases gradually without abrupt fall-off. This is because the wing-tip vortices induce a strong downward flow interacting with the flow separated from the leading edge and delay subsequent vortex roll-up in the downstream. The wing-tip vortices themselves also produce low-pressure regions on the upper-wing surface and thus provide an additional lift force. The flows separated from the leading and trailing edges are eventually combined into pairs of hairpin vortices which travel downstream in the wake. The formation of the hairpin vortices above the upper-wing surface also generates lowpressure regions, and they are another source of the lift force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. S. Lissaman, Low-Reynolds-number airfoils, Annu. Rev. Fluid Mech., 15 (1983) 223–239.

    Article  Google Scholar 

  2. T. J. Mueller and J. D. DeLaurier, Aerodynamics of small vehicles, Annu. Rev. Fluid Mech., 35 (2003) 89–111.

    Article  Google Scholar 

  3. D. J. Pines and F. Bohorquez, Challenges facing future micro- air-vehicle development, J. Aircraft, 43 (2006) 290–305.

    Article  Google Scholar 

  4. W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of low Reynolds number flyers, Cambridge University Press New York, USA (2008).

    Google Scholar 

  5. J. Kwon and H. Choi, Sectional lift coefficient of a flapping wing in hovering motion, Phys. Fluids, 22 (2010) 071703.

    Article  Google Scholar 

  6. H. Park and H. Choi, Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes, Bioinspir. Biomim., 7 (2012) 016008.

    Article  Google Scholar 

  7. B. H. Carmichael, Low Reynolds number airfoil survey Volume I, NASA-CR-165803 (1981).

    Google Scholar 

  8. G. E. Torres and T. J. Mueller, Low-aspect-ratio wing aerodynamics at low Reynolds numbers, AIAA J., 42 (2004) 865–873.

    Article  Google Scholar 

  9. K. Taira and T. Colonius, Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers, J. Fluid Mech., 623 (2009) 187–207.

    Article  MATH  Google Scholar 

  10. J. J. Wang and J. Q. Tu, Effect of wing planform on leading- edge vortex structures, Chinese Sci. Bull., 55 (2010) 120–123.

    Article  MATH  Google Scholar 

  11. M. Okamoto and A. Azuma, Aerodynamic characteristics at low Reynolds numbers for wings of various planforms, AIAA J., 49 (2011) 1135–1150.

    Article  Google Scholar 

  12. A. Pelletier and T. J. Mueller, Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings, J. Aircraft, 37 (2000) 825–832.

    Article  Google Scholar 

  13. P. Cosyn and J. Vierendeels, Numerical investigation of low-aspect-ratio wings at low Reynolds numbers, J. Aircraft, 43 (2006) 713–722.

    Article  Google Scholar 

  14. S. Sunada, T. Yasuda, K. Yasuda and K. Kawachi, Comparison of wing characteristics at an ultralow Reynolds number, J. Aircraft, 39 (2002) 331–338.

    Article  Google Scholar 

  15. T. Jian and Z. Ke-Qin, Numerical and experimental study of flow structure of low-aspect-ratio wing, J. Aircraft, 41 (2004) 1196–1201.

    Article  Google Scholar 

  16. Y. Lian and W. Shyy, Three-dimensional fluid-structure interactions of a membrane wing for micro air vehicle applications, AIAA Paper 2003-1726 (2003).

    Google Scholar 

  17. D. R. Morse and J. A. Liburdy, Vortex dynamics and shedding of a low aspect ratio, flat wing at low Reynolds numbers and high angles of attack, J. Fluids Eng., 131 (2009) 051202.

    Article  Google Scholar 

  18. C. P. Ellington, Insects versus birds: the great divide, AIAA Paper 2006-35 (2006).

    Google Scholar 

  19. J. J. Videler, E. J. Stamhuis and G. D. E. Povel, Leadingedge vortex lifts swifts, Science, 306 (2004) 1960–1962.

    Article  Google Scholar 

  20. E. A. Leylek, J. E. Manzo and E. Garcia, Bat-inspired wing aerodynamics and optimization, J. Aircraft, 47 (2010) 323–328.

    Article  Google Scholar 

  21. H. Park and H. Choi, Aerodynamic characteristics of flying fish in gliding flight, J. Exp. Biol., 213 (2010) 3269–3279.

    Article  Google Scholar 

  22. H. Choi, H. Park, W. Sagong and S.-I. Lee, Biomimetic flow control based on morphological features of living creatures, Phys. Fluids, 24 (2012) 121–302.

    Google Scholar 

  23. Y. Hu, J. J. Wang, P. F. Zhang and C. Zhang, Experimental investigation on the flow structure over a simplified Papilio Ulysses model, Chinese Sci. Bull., 54 (2009) 1026–1031.

    Article  Google Scholar 

  24. Y. Hu and J. J. Wang, Experimental investigation on aerodynamic performance of gliding butterflies, AIAA J., 48 (2010) 2454–2457.

    Article  Google Scholar 

  25. Y. Hu and J. J. Wang, Dual leading-edge vortex structure for flow over a simplified butterfly model, Exp. Fluids, 50 (2011) 1285–1292.

    Article  Google Scholar 

  26. M. Okamoto, S. Sunada and H. Tokutake, Stability analysis of gliding flight of a swallowtail butterfly Papilio xuthus, J. Theor. Biol., 257 (2009) 191–202.

    Article  Google Scholar 

  27. M. Okamoto, S. Sunada and H. Tokutake, Stability of gliding flight of a swallowtail butterfly, AIAA J., 48 (2010) 2970–2976.

    Article  Google Scholar 

  28. H. Park, K. Bae, B. Lee, W.-P. Jeon and H. Choi, Aerodynamic performance of a gliding swallowtail butterfly wing model, Exp. Mech., 50 (2010) 1313–1321.

    Article  Google Scholar 

  29. A. K. Brodsky, The evolution of insect flight, Oxford University Press New York, USA (1994).

    Google Scholar 

  30. J. Kim, D. Kim and H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., 171 (2001) 132–150.

    Article  MATH  MathSciNet  Google Scholar 

  31. P. R. Spalart, R. D. Moser and M. M. Rogers, Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions, J. Comput. Phys., 96 (1991) 297–324.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech., 285 (1995) 69–94.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haecheon Choi.

Additional information

Recommended by Editor Dongshin Shin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Seong, J., Park, H. et al. Flow structures around a butterfly-shaped low-aspect-ratio wing. J Mech Sci Technol 28, 2669–2675 (2014). https://doi.org/10.1007/s12206-014-0623-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0623-3

Keywords

Navigation