Skip to main content
Log in

Fluid-solid interaction in electrostatically actuated carbon nanotubes

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper deals with investigation of fluid flow on static and dynamic behaviors of carbon nanotubes under electrostatic actuation. The effects of various fluid parameters including fluid viscosity, velocity, pressure and mass ratio on the deflection and pull-in behaviors of the cantilever and doubly clamped carbon nanotubes are studied. Furthermore, the effects of temperature variation on the static and dynamic pull-in voltages of the doubly clamped carbon nanotubes are reported. The results reveal that altering the fluid parameters significantly changes the mechanical and pull-in behaviors. Hence, the proposed system can be applied properly as a nano fluidic sensor to sense the various parameters of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. He, Nanoscale flow: reliable, efficient, and promising, Thermal Science, 16 (2012) 7–8.

    Article  Google Scholar 

  2. R. X. Chen, F. J. Liu, J. H. He and J. Fan, Silk Cocoon: “Emperor’s new clothes” for pupa: fractal nanohydrodynamical approach, Journal of Nano Research, 22 (2013) 65–70.

    Article  Google Scholar 

  3. M. Majumder, N. Chopra, R. Andrews and B. J. Hinds, Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes, Nature, 438 (2005) 44–44.

    Article  Google Scholar 

  4. G. Hummer, Water, proton, and ion transport: from nanotubes to proteins, Molecular Physics, 105 (2007) 201–207.

    Article  Google Scholar 

  5. M. Whitby and N. Quirke, Fluid flow in carbon nanotubes and nanopipes, Nature Nanotechnology, 2 (2007) 87–94.

    Article  Google Scholar 

  6. L. Li, Y. Zhang, H. Ma and M. Yang, Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids, Journal of Nanoparticle Research, 12 (2010) 811–821.

    Article  Google Scholar 

  7. J. Lv, W. Cui, M. Bai and X. Li, Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition, Microfluidics and nanofluidics, 10 (2011) 475–480.

    Article  Google Scholar 

  8. A. G. Arani, M. R. Bagheri, R. Kolahchi and Z. K. Maraghi, Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory, Journal of Mechanical Science and Technology, 27 (2013) 2645–2658.

    Article  Google Scholar 

  9. H. R. Ali-Akbari, R. D. Firouz-Abadi, H. Haddadpour and M. A. Noorian, Shell-like instability of large diameter single-walled carbon nanotubes conveying fluid, Journal of mechanical Science and Technology, 26 (2012) 3389–3397.

    Article  Google Scholar 

  10. M. Han, Thermally-driven nanoscale pump by molecular dynamics simulation, Journal of Mechanical Science and Technology, 22 (2008) 157–165.

    Article  Google Scholar 

  11. A. G. Arani, M. Shokravi, S. Amir and M. R. Mozdianfard, Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs, Journal of Mechanical Science and Technology, 26 (2012) 1455–1462.

    Article  Google Scholar 

  12. R. D. Firouz-Abadi, M. M. Fotouhi, M. R. Permoon and H. Haddadpour, Natural frequencies and buckling of pressurized nanotubes using shear deformable nonlocal shell model, Journal of Mechanical Science and Technology, 26 (2012) 563–573.

    Article  Google Scholar 

  13. T. K. Lim and S. H. Rhi, Experimental study on nanofludic heat pipe hot chuck plate in semiconductor wafer baking process, Journal of Mechanical Science and Technology, 24 (2010) 1501–1509.

    Article  Google Scholar 

  14. J. Yoon, C. Q. Ru and A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, International Journal of Solids and Structures, 43 (2006) 3337–3349.

    Article  MATH  Google Scholar 

  15. L. Wang and Q. Ni, On vibration and instability of carbon nanotubes conveying fluid, Computational Materials Science, 43 (2008) 399–402.

    Article  Google Scholar 

  16. L. Wang and Q. Ni, A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid, Mechanics Research Communications, 36 (2009) 833–837.

    Article  MATH  Google Scholar 

  17. S. D. Solares, M. Blanco and W. A. Goddard, Design of a nanomechanical fluid control valve based on functionalized silicon cantilevers: coupling molecular mechanics with classical engineering design, Nanotechnology, 15 (2004) 1405–1415.

    Article  Google Scholar 

  18. M. Grujicic, G. Cao and W. N. Roy, Suitability of boron-nitride single-walled nanotubes as fluid-flow conduits in nano-valve applications, Applied Surface Science, 246 (2005) 149–158.

    Article  Google Scholar 

  19. H. Y. Chen, Z. F. Liu, X. G. Gong and D. Y. Sun, Design of a one-way nanovalve based on carbon nanotube junction and C60, Microfluidics and Nanofluidics, 10 (2011) 927–933.

    Article  Google Scholar 

  20. S. Rinaldi, S. Prabhakar, S. Vengallatore and M. P. Païdoussis, Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability, Journal of Sound and Vibration, 329 (2010) 1081–1088.

    Article  Google Scholar 

  21. Y. D. Kuang, X. Q. He, C. Y. Chen and G. Q. Li, Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid, Computational Materials Science, 45 (2009) 875–880.

    Article  Google Scholar 

  22. E. Ghavanloo and S. A. Fazelzadeh, Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid, Physica E: Lowdimensional Systems and Nanostructures, 44 (2011) 17–24.

    Article  Google Scholar 

  23. H. L. Lee and W. J. Chang, Vibration analysis of a viscousfluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E: Low-dimensional Systems and Nanostructures, 41 (2009) 529–532.

    Article  Google Scholar 

  24. L. Wang, Q. Ni, M. Li and Q. Qian, The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Physica E: Low-dimensional Systems and Nanostructures, 40 (2008) 3179–3182.

    Article  Google Scholar 

  25. M. Dequesnes, S. V. Rotkin and N. R. Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches, Nanotechnology, 13 (2002) 120–126.

    Article  Google Scholar 

  26. G. Rezazadeh, A. Tahmasebi and M. Zubstov, Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage, Microsystem technologies, 12 (2006) 1163–1170.

    Article  Google Scholar 

  27. M. I. Younis and A. H. Nayfeh, A study of the nonlinear response of a resonant microbeam to an electric actuation, Nonlinear Dynamics, 31 (2003) 91–117.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Additional information

Recommended by Associate Editor Jaewon Chung

Mir Masoud Seyyed Fakhrabadi received the B.S. and M.S. degrees in Mechanical Engineering from the University of Tabriz, Iran, in 2007 and 2009, respectively. Also, he received his Ph.D. in Nanomechnics Engineering from University of Tehran, Iran in 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhrabadi, M.M.S., Rastgoo, A. & Ahmadian, M.T. Fluid-solid interaction in electrostatically actuated carbon nanotubes. J Mech Sci Technol 28, 1431–1439 (2014). https://doi.org/10.1007/s12206-014-0130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0130-6

Keywords

Navigation