Skip to main content
Log in

A hybrid controller based on CPG and ZMP for biped locomotion

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Biped locomotion has attracted much attention in recent years. The most successful implemented methods in this area are based on two approaches, central pattern generator (CPG) and zero moment point (ZMP). Unfortunately, neither of these concepts can solely solve the movement challenge completely. In this study, we introduce a hybrid controller to combine the advantages of these methods. The proposed controller is based on two major approaches, CPG and ZMP. This hybrid controller is composed of a trajectory control system and a trajectory generator system. The trajectory control system applied to keep the robot stable uses ZMP as a real time control feedback. The trajectory generator system, which is composed of nonlinear oscillators, generates stable motions. The parameters of CPG are tuned by a new two-stage approach using differential evolution (DE) and bees algorithm (BA). Furthermore, performance of the proposed controller is verified using the robotic simulation software Webots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai and N. Koyachi, Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, 17(3) (2001) 280–289.

    Article  Google Scholar 

  2. K. Nagasaka, H. Inoue and M. Inaba, Dynamic walking pattern generation for a humanoid robot based on optimal gradient method, Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, Tokyo, Japan (1999) 908–913.

    Google Scholar 

  3. M. Vukobratovic and B. Borovac, Zero-moment point — thirty five years of its life, International Journal of Humanoid Robotics, 1(1) (2004) 157–173.

    Article  Google Scholar 

  4. K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh and J. Yamaguchi, Integrated motion control for walking, jumping and running on a small bipedal entertainment robot, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Tokyo, Japan (2004) 3189–3914.

    Google Scholar 

  5. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki and K. Fujimura, The intelligent ASIMO: System overview and integration, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Saitama, Japan (2002) 2478–2483.

    Google Scholar 

  6. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi and H. Hirukawa, The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Hawaii, USA (2001) 239–246.

    Google Scholar 

  7. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, Proc. IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan (2003) 1620–1626.

    Google Scholar 

  8. K. Erbatur and O. Kurt, Natural ZMP trajectories for biped robot reference generation, IEEE Transactions on Industrial Electronics, 56(3) (2009) 835–845.

    Article  Google Scholar 

  9. T. Sato, S. Sakaino, E. Ohashi and K. Ohnishi, Walking trajectory planning on stairs using virtual slope for biped robots, IEEE Transactions on Industrial Electronics, 58(4) (2011) 1385–1396.

    Article  Google Scholar 

  10. A. J. Ijspeert, Biologically inspired artificial intelligence, Class Lecture, EPFL, Switzerland (2003).

    Google Scholar 

  11. S. Mojon, Using nonlinear oscillators to control the locomotion of a simulated biped robot, Master’s thesis, EPFL, Switzerland (2004).

    Google Scholar 

  12. W. QiDi, L. ChengJu, Z. JiaQi and C. QiJun, Survey of locomotion control of legged robots inspired by biological concept, Science in China Series F: Information Sciences, 52(10) (2009) 1715–1729.

    Article  MATH  Google Scholar 

  13. S. Mondal, A. Nandy, P. Chakraborty and G. C. Nandi, A central pattern generator based nonlinear controller to simulate biped locomotion with a stable human gait oscillation, International Journal of Robotics and Automation, 2(2) (2011) 93–106.

    Google Scholar 

  14. K. Wolff, J. Pettersson, A. Heralic and M. Wahde, Structural evolution of central pattern generators for bipedal walking in 3D simulation, Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, Goteborg, Sweden (2006) 227–234.

    Google Scholar 

  15. J. J. Kim, J. W. Lee and J. J. Lee, Central pattern generator parameter search for a biped walking robot using nonparametric estimation based particle swarm optimization, International Journal of Control, Automation and Systems, 7(3) (2009) 447–457.

    Article  Google Scholar 

  16. G. Taga, Y. Yamaguchi and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, 65 (1991) 147–159.

    Article  MATH  Google Scholar 

  17. L. Righetti and A. J. Ijspeert, Programmable central pattern generators an application to biped locomotion control, Proc. IEEE Int. Conf. on Robotics and Automation, Orlando, Florida, USA (2006) 1585–1590.

    Google Scholar 

  18. G. Endo, J. Nakanishi, J. Morimoto and G. Cheng, Experimental studies of a neural oscillator for biped locomotion with QRIO, Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain (2005) 598–604.

    Google Scholar 

  19. K. Matsuoka, Mechanisms of frequency and pattern control in the neural rhythm generators, Journal of Biological Cybernetics, 56(5) (1987) 345–353.

    Article  Google Scholar 

  20. NAO Humanoid Robot. Aldebaran Robotics, Paris, France, http://www.aldebaran-robotics.com.

  21. Webots, C.L.: Commercial mobile robot simulation software. http://www.cyberbotics.com.

  22. D. Orin, Interactive control of a six-legged vehicle with optimization of both stability and energy, Ph.D. thesis, The Ohio State University, USA (1976).

    Google Scholar 

  23. A. Goswami, Postural stability of biped robots and the foot-rotation indicator point, International Journal of Robotics Research, 18(6) (1999) 523–533.

    Article  MathSciNet  Google Scholar 

  24. B. Siciliano and O. Khatib, Springer handbook of robotics, Springer-Verlag, New York, USA (2008).

    Book  MATH  Google Scholar 

  25. S. L. Hooper, Central pattern generators, John Wiley & Sons, New York, USA (2001).

    Google Scholar 

  26. A. D. Kuo, The relative roles of feedforward and feedback in the control of rhythmic movements, Motor Control, 6(2) (2002) 129–145.

    Google Scholar 

  27. J. shan, C. J. Shi and C. J. Pin, Design of central pattern generator for humanoid robot walking based on multiobjective GA, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Takamatsu, Japan (2000) 1930–1935.

    Google Scholar 

  28. H. Inada and K. Ishii, Behavior generation of bipedal robot using central pattern generator (CPG) (1st report: CPG parameter searching method by genetic algorithm), Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Las Vegas, USA (2003) 2179–2184.

    Google Scholar 

  29. S. Ok, K. Miyashita and K. Hase, Evolving bipedal locomotion with genetic programming-a preliminary report, Proc. IEEE Int. Cong. on Evolutionary Computation, Seoul, Korea (2001) 1025–1032.

    Google Scholar 

  30. Y. Nakamura, T. Mori, M. Sato and S. Ishii, Reinforement learning for a biped robot based on a CPG-actor-critic method, Neural Networks, 20(6) (2007) 723–735.

    Article  MATH  Google Scholar 

  31. R. Storn and K. Price, Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11(4) (1997) 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and M. Zaidi, The bees algorithm — A novel tool for complex optimisation problems, Proc. of Int. Conf. on Intelligent Production Machines and Systems, Oxford, UK (2006) 454–459.

    Google Scholar 

  33. G. L. Liu, M. K. Habib, K. Watanabe and K. Izumi, Central pattern generators based on Matsuoka oscillators for the locomotion of biped robots, Artificial Life and Robotics, 12(1) (2008) 264–269.

    Article  Google Scholar 

  34. Open dynamic enginedocumentation, http://www.ode.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Massah B.

Additional information

Recommended by Associate Editor Jong Hyeon Park

Ali Zamani received his B.Sc. and M.Sc. degrees in Mechanical Engineering from K. N. ToosiUniversity of Technology in 2008 and 2011, respectively. His research interests are in the areas of dynamics modeling, gait planning, and control of walking robots.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massah B, A., Zamani, A., Salehinia, Y. et al. A hybrid controller based on CPG and ZMP for biped locomotion. J Mech Sci Technol 27, 3473–3486 (2013). https://doi.org/10.1007/s12206-013-0871-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-013-0871-7

Keywords

Navigation