Skip to main content
Log in

Introduction of a chaotic dough mixer, part A: mathematical modeling and numerical simulation

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The motivation of this work is to propose a special dough mixer with chaotic advection to take advantage of high performance mixing in chaotic mixers and to develop typical dough mixers. In order to prevent common difficulties encountered due to the dynamic mesh, a mathematical model was employed based on neglecting the transient term of the momentum equation using conceptual features from creeping flow. Then, the numerical simulation was performed using the bird Carreau dough model of Dhanasekharan. The mathematical model was further developed to complete the numerical procedure in order to find the required material point trajectories for assessing the presence of chaotic advection in the proposed mixer. In this approach, Lyapunov exponents were also calculated which quantify the exponential divergence of the initially close state-space trajectories and identify chaotic behavior of the system as well. The results indicated that the flow field was a combination of both chaotic and non-chaotic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Prakash and J. L. Kokini, Estimation and prediction of shear rate distribution as a model mixer, Journal of Food Engineering, 44 (2000) 135–148.

    Article  Google Scholar 

  2. S. Prakash, M. V. Karwe and J. L. Kokini, Measurement of velocity distribution in the brabender farinograph as a model mixer using laser-doppler anemometry, Journal of Food Process Engineering, 22 (1999) 435–454.

    Article  Google Scholar 

  3. C. F. Wang and J. L. Kokini, Prediction of the nonlinear viscoelastic properties of gluten doughs, Journal of Food Engineering, 25 (1994) 297–309.

    Article  Google Scholar 

  4. K. M. Dhanasekharan, H. Huang and J. L. Kokini, Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner Models, Journal of Texture Studies, 30 (1999) 603–623.

    Article  Google Scholar 

  5. K. M. Dhanasekharan, C. F. Wang and J. L. Kokini, Use of nonlinear differential viscoelastic models to predict the rheological properties of gluten dough, Journal of Food Process Engineering, 24 (2001) 193–216.

    Article  Google Scholar 

  6. C. Breuillet, E. Yildiz, B. Cuq and J. L. Kokini, Study of the anomalous capillary bagley factor behavior of three types of wheat flour doughs at two moistures, Journal of Texture Studies, 33 (2002) 315–340.

    Article  Google Scholar 

  7. S. J. Dus and J. L. Kokini, Prediction of the nonlinear viscoelastic properties of a hard wheat flour dough using the Bird-Carreau constitutive mode, Journal of Rheology, 34(7) (1990) 1069–1084.

    Article  Google Scholar 

  8. C. F. Wang and J. L. Kokini, Simulation of the nonlinear rheological properties of gluten dough using the wagner constitutive model, Journal of Rheology, 39 (1995) 1465–1482.

    Article  Google Scholar 

  9. R. K. Connelly and J. L. Kokini, 2-D numerical simulation of differential viscoelastic fluids in a single-screw continuous mixer: Application of viscoelastic finite element methods, Advances in Polymer Technology, 2(1) (2003) 22–41.

    Article  Google Scholar 

  10. S. Prakash and J. L. Kokini, Determination of mixing efficiency in a model food mixer, Advances in Polymer Technology, 18(3) (1999) 209–224.

    Article  Google Scholar 

  11. K. Sujatha, D. Ding and M. F. Webster, Modelling of dough mixing with free surfaces in two and three dimensions. Sixth International Conference on Computational Modelling of Free and Moving Boundary Problems, Brebbia CA, Sarler B (eds). WIT: Lemnos, Greece (2001) 102–111.

    Google Scholar 

  12. K. S. Sujatha, M. F. Webster, D. M. Binding and M. A. Couch, Modeling and experimental studies of rotating flows in part-filled vessels: Wetting and peeling, Journal of Food Engineering, 57 (2003) 67–79.

    Article  Google Scholar 

  13. A. Baloch, P. W. Grant and M. F. Webster, Parallel computation of two dimensional rotational flows of viscoelastic fluids in cylindrical vessels, Engineering Computations, 19(7) (2003) 820–853.

    Article  Google Scholar 

  14. D. M. Binding, M. A. Couch, K. S. Sujatha and M. F. Webster, Experimental and numerical simulation of dough kneading in filled geometries, Journal of Food Engineering, 58 (2003) 111–123.

    Article  Google Scholar 

  15. A. Balouch and M. F. Webster, Distributed parallel computation for complex rotational flows of non-newtonian fluids, International Journal for Numerical Methods in Fluids, 43 (2003) 1301–1328.

    Article  MathSciNet  Google Scholar 

  16. M. A. Couch and D. M. Binding, An experimental study of the peeling of dough from solid surfaces, Journal of Food Engineering, 58 (2003) 299–309.

    Article  Google Scholar 

  17. A. H. Bloksma, Slow creep of wheat flour dough, Rheologica Acta, 2 (1962) 217–230.

    Article  Google Scholar 

  18. J. E. Goodrich and R. S. Porter, A rheological interpretation of torque rheometer data, Polymer Engineering Science, 7 (1967) 45–51.

    Article  Google Scholar 

  19. L. Blyler and J. R. Daane, An analysis of Brabender torque rheometer data, Polymer Engineering Science, 7 (1967) 178–181.

    Article  Google Scholar 

  20. B. L. D’Appolonia and W. H. Kunerth, The farinograph handbook, Third Ed. American Association of Cereal Chemistry (1982).

    Google Scholar 

  21. K. M. Dhanasekharan and J. L. Kokini, Viscoelastic flow modeling in the extrusion of a dough-like fluid, Journal of Food Process Engineering, 23 (2000) 237–247.

    Article  Google Scholar 

  22. K. M. Dhanasekharan and J. L. Kokini, Design and scaling of wheat dough extrusion by numerical, Journal of Food Engineering, 60 (2003) 421–430.

    Article  Google Scholar 

  23. K. L. Mackey and R. Y. Ofoli, Rheology of low-to intermediate-moisture whole wheat flour doughs, Cereal Chemistry, 67(3) (1990 b) 221–226.

    Google Scholar 

  24. A. Naranjo, M. del Pilar Noriega, T. Osswald, A. Roldan-Alzate and J. Diego Sierra, Plastics testing and characterization: Industrial applications, Munich: Hanser Gardner (2008).

    Book  Google Scholar 

  25. J. G. Oldroyd. On the formulation of rheological equations of state, Proc. R. Soc. Lond. A, 22(200) (1950) 523–541.

    MathSciNet  Google Scholar 

  26. N. Phan-Thien and R. I. Tanner, A new constitutive equation derived from network theory, J. Non-Newt. Fluid Mech, 2(4) (1977) 353–366.

    Article  Google Scholar 

  27. R. K. Connelly and J. L. Kokini, 3D numerical simulation of the flow of viscous newtonian and shear thinning fluids in a twin sigma blade mixer, Advances in Polymer Technology, 25(3) (2006) 182–194.

    Article  Google Scholar 

  28. R. K. Connelly and J. L. Kokini, Examination of the mixing ability of single and twin screw mixers using 2D finite element method simulation with particle tracking, Journal of Food Engineering, 79 (2007) 956–969.

    Article  Google Scholar 

  29. R. K. Connelly and J. L. Kokini, The effect of shear thinning and differential viscoelasticity on mixing in a model 2D mixer as determined using FEM with particle tracking, Journal of Non-Newtonian Fluid Mechanics, 123 (2004) 1–17.

    Article  MATH  Google Scholar 

  30. H. Aref, Stirring by Chaotic Advection, Journal of Fluid Mechanics, 143 (1984) 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Chagny, C. Castelain and H. Peerhossaini, Chaotic heat transfer for heat exchanger design and comparison with a regular regime for a large range of Reynolds numbers, Applied Thermal Engineering, 20 (2001) 1615–1648.

    Article  Google Scholar 

  32. J. M. Ottino, The kinematics of mixing: stretching, chaos and transport, Cambridge University Press, Cambridge (1989).

    MATH  Google Scholar 

  33. M. M. Alvarez-Hernandez, T. Shinbrot, J. Zalc and F. J. Muzzio, Practical chaotic mixing, Chemical Engineering Science, 57 (2002) 3749–3753.

    Article  Google Scholar 

  34. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, Passive mixing in a three-dimensional serpentine microchannel, journal of microelectromechanical systems, 9 (2000)190–197.

    Article  Google Scholar 

  35. T. Y. Hwu, Chaotic stirring in a new type of mixer with rotating rigid blades, European Journal of Mechanics B/Fluid, 27 (2008) 239–250.

    Article  MATH  Google Scholar 

  36. S. J. Park, J. K. Kim, J. Park, S. Chung, C. Chung and J. K. Chang, Rapid three dimensional passive rotation micromixer using the breakup process, Journal of Micromechanics and Microengineering, 14 (2004) 6–14.

    Article  Google Scholar 

  37. T. C. Niederkorn and J. M. Ottino, Mixing of a viscoelastic fluid in a time-periodic flow, Journal of Fluid Mechanics, 256 (1993) 243–268.

    Article  Google Scholar 

  38. P. D. Swanson and J. M. Ottino, A comparative computational and experimental study of chaotic mixing of viscous fluids, Journal of Fluid Mechanics, 213 (1990) 227–249.

    Article  MathSciNet  Google Scholar 

  39. S. Kumar and G. M. Homsy, Chaotic advection in creeping flow of viscoelastic fluids between slowly modulated eccentric cylinders, Journal of Physics and Fluids, 8(7) (1996) 1774–1787.

    Article  MATH  Google Scholar 

  40. T. C. Niederkorn and J. M. Ottino, Chaotic mixing of shear-thinning fluids, AIChE Journal, 40 (1994) 1782–1793.

    Article  Google Scholar 

  41. A. M. Cocero, The rheology and phase transitions of wheat glutenin, PhD thesis Rutgers University, New Brunswick, NJ, USA (1993).

    Google Scholar 

  42. D. M. Hobbs and F. J. Muzzio, the Kenics static mixer: a three-dimensional flow, Chemical Engineering Journal, 67 (1997) 153–166.

    Article  Google Scholar 

  43. A. Yamagishi, T. Inaba and Y. Yamaguchi, Chaotic analysis of mixing enhancement in steady laminar flows through multiple pipe bends, International Journal of Heat and Mass Transfer, 50 (2007) 1238–1247.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mostafa Hosseinalipour.

Additional information

Recommended by Associate Editor Yang Na

Seyed Mostaf Hosseinalipour is the professor of mechanical engineering of IUST (Iran University of Science and Technology). His main interest research subjects are experimental and numerical works in transport phenomena, Energy systems and food engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinalipour, S.M., Tohidi, A., Shokrpour, M. et al. Introduction of a chaotic dough mixer, part A: mathematical modeling and numerical simulation. J Mech Sci Technol 27, 1329–1339 (2013). https://doi.org/10.1007/s12206-012-0895-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-012-0895-4

Keywords

Navigation