Skip to main content
Log in

Study of the influence of geometrical and mechanical parameters on ballasted railway tracks design

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper investigates the vertical deflection on ballasted railway tracks from a set of cases of railway track typologies which differ in six track parameters: embankment height, ballast thickness, sleeper spacing, rail pad stiffness, Young’s modulus of the embankment material and the load applied to the structure. Finite element method has been the tool to assess the structural combinations and the results provided by linear and nonlinear analyses have been contrasted. Then, a new formulation for the deflection estimation in terms of the aforementioned parameters is presented based on a multiple regression model. The results provided by this formulation have been compared to those obtained from the classic Zimmermann theory. Finally, a stress analysis has been performed to complete the study and better understand the global behaviour of the railway structure. This article pretends to improve the design process and construction of ballasted railway tracks by means of proposing a formulation which estimates the track deflection to obtain the optimum track stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Hunt, Review the effect of track stiffness on track performance, RSSB, Research Project T372 (2005).

  2. M. Burrow, P. Teixeira, T. Dahlberg and E. Berggen, Track stiffness considerations for high speed railway lines, Railway transportation: policies, technology and Perspectives, Ed. N. P. Scott, Nova Publishers (2009).

  3. F. Meissonmier, EUROBALT II european research for an optimised ballasted track, Final Report Technical Part — 7S/001127/E1/DC (2000).

  4. UIC, Project I/03/U/283 — Ballastless Track — Version 2005-08-02, Draft -Vertical Elasticity of Ballastless Track (2005).

  5. M. X. D. Li and E. G. Berggren, A study of the effect of global track stiffness and its variations on track performance: Simulation and measurement, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit (2010) 224–375.

  6. A. López Pita, P. Fonseca Teixeira and F. Robuste, High speed and track deterioration: the role of vertical stiffness of the track, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(1) (2004) 31–40.

    Article  Google Scholar 

  7. C. Esveld, Modern railway track, 2nd edition, MRT Productions, Zaltbommel, The Netherlands (2001).

    Google Scholar 

  8. P. F. Teixeira, Contribución a la reducción de los costes de mantenimiento de las vías de alta velocidad mediante la optimización de su rigidez vertical, PhD Thesis, Universidad Politecnica de Cataluña (2003).

  9. A. López Pita, Nuevos criterios en el dimensionamiento de vías férreas, Revista de Obras Públicas, 124(3147) (1977) 571–580.

    Google Scholar 

  10. A. López Pita, Un nuevo método para la determinación de la capa de balasto, AIT 13 (1976) 77–89.

    Google Scholar 

  11. I. Gallego Giner and A. Lopez Pita, Numerical simulation of embankment-structure transition design, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(4) (2009) 331–343.

    Article  Google Scholar 

  12. A. López Pita and C. Oteo Mazo, Análisis de la deformabilidad vertical de una vía férrea mediante el método de elementos finitos, AIT, 15(4) (1977) 33–40.

    Google Scholar 

  13. V. Profillidis, La voie ferrée et sa foundation, Modelisation mathématique, PhD Thesis, Ecole Nationale des Ponts et Chausées, Paris (1983).

    Google Scholar 

  14. ORE committee D-117, Adaptation optimal de la voie classique au traffic de l’avenir, Rapport no 27, Comportament des structures d’assise de la voie sous changes répétées, E.T.F., Paris (1983).

    Google Scholar 

  15. M. P. N. Burrow, D. Bowness and G. S. Ghataora, A comparison of railway track foundation design methods, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(1) (2007) 1–12.

    Article  Google Scholar 

  16. Ministerio de fomento/Secretaría de estado de Infraestructuras y Transportes, Recomendaciones para el proyecto de plataformas ferroviarias, Centro de publicaciones, Madrid (1999).

  17. UIC. Earthworks and track bed construction for railway lines. UIC 719, International Union of Railways, Paris, France (1984).

    Google Scholar 

  18. R. Romero Villafranca and L. Zúnica Ramajo, Métodos estadísticos en ingeniería, Editorial U.P.V., Valencia (2004).

    Google Scholar 

  19. E. Tutumluer, D. N. Little and D. H. Kim, Validated model for predicting field performance of aggregate base courses. Geomaterials 2003 - Soils, Geology, and Foundations, 1837 (2003) 41–49.

    Google Scholar 

  20. Y. Qiu, N. D. Dennis and R. P. Elliott, Design criteria for permanent deformation of subgrade soils in flexible pavements for low-volume roads. Soils and Foundation, 40(1) (2000) 1–10.

    Article  Google Scholar 

  21. S. Helwany, J. Dyer and J. Leidy, Finite-element analyses of flexible pavements, Journal of Transportation Engineering, 124(5) (1998) 491–499.

    Article  Google Scholar 

  22. S. S. Radampola, N. Gurung, T. McSweeney and M. Dhanasekar, Evaluation of the properties of railway capping layer soil, Computers and Geotechnics, 35(5) (2008) 719–28.

    Article  Google Scholar 

  23. D. C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics, 10 (1952) 157–165.

    MathSciNet  MATH  Google Scholar 

  24. A. López Pita, Infraestructuras ferroviarias, Ediciones U.P.C., Barcelona (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia I. Real.

Additional information

Recommended by Associate Editor Kyeongsik Woo

Julia Real is a Civil Engineer. She studied at Polytechnic University of Valencia. Nowadays she is a professor at the School of Civil Engineering at this university. Julia Real leads a research group specialized in railway engineering, which is enshrined in the Department of Engineering and Infrastructures of Transportation. She has collaborated on 25 research projects in association with private companies over the last years. Furthermore she has published several papers, as “Determination of rail vertical profile through inertial methods” and “A procedure for the evaluation of vibrations induced by the passing of a train and its application to real railway traffic”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Real, J.I., Gómez, L., Montalbán, L. et al. Study of the influence of geometrical and mechanical parameters on ballasted railway tracks design. J Mech Sci Technol 26, 2837–2844 (2012). https://doi.org/10.1007/s12206-012-0734-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-012-0734-7

Keywords

Navigation