Skip to main content
Log in

Rotating disk apparatus for polymer-induced turbulent drag reduction

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In order to investigate turbulent drag reduction (DR), a rotating disk apparatus (RDA) generating an “external flow” was designed and then polymer-induced DR efficiency of water-soluble polymers both poly (ethylene oxide) (PEO) and poly (acryl amide) (PAAM) were examined as a function of either polymer concentration or temperature. The need for a sensitive measuring system at high Reynolds numbers has stimulated the development of a high-precision computer-aided system, which is able to measure the difference between the torques for a Newtonian fluid and a dilute polymeric solution with drag reducers very accurately. Their mechanical degradation behavior in the RDA as a function of time in a turbulent flow was also analyzed using both a simple exponential decay function and a fractional exponential decay equation. The fractional exponential decay equation was found to fit the experimental data better than the simple first-order degradation exponential decay function in the case of PEO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Amarouchene and H. Kellay, Polymers in 2D turbulence: Suppression of large scale fluctuations, Phys. Rev. Lett. 89(10) (2002) 104502.

    Google Scholar 

  2. P. Tong, W. I. Goldburg, C. K. Chan and A. Sirivat, Turbulent transition by photon-correlation spectroscopy, Phys. Rev. A 37(6) (1988) 2125–2133.

    Article  Google Scholar 

  3. A. Nakano and Y. Minoura, Effects of solvent and concentration on scission of polymers with high-speed stirring, J. Appl. Polym. Sci. 19(8) (1975) 2119–2130.

    Article  Google Scholar 

  4. A. Nakano and Y. Minoura, Relationship between hydrodynamic volume and scission of polymer-chains by high-speed stirring in several solvents, Macromolecules, 8(5) (1975) 677–680.

    Article  Google Scholar 

  5. J. F. S. Yu; J. L. Zakin and G. K. Patterson, Mechanical degradation of high molecular-weight polymers in dilute-solution, J. Appl. Polym. Sci. 23(8) (1979) 2493–2512.

    Article  Google Scholar 

  6. E. Ruckenst, Mechanism of drag reduction, J. Appl. Polym. Sci., 17(10) (1973) 3239–3240.

    Article  Google Scholar 

  7. R. Armstrong and M. S. Jhon, A self-consistent theoretical approach to polymer induced turbulent drag reduction, Chem. Eng. Commun., 30 (1984) 99–112.

    Article  Google Scholar 

  8. E. D. Burger, L. G. Chorn and T. K. Perkins, Studies of drag reduction conducted over a broad range of pipeline conditions when flowing Prudhoe Bay crude-oil, J. Rheol., 24(5) (1980) 603–626.

    Article  Google Scholar 

  9. H. L. Greene, R. F. Mostardi and R. F. Nokes, Effects of drag reducing polymers on initiation of atherosclerosis, Polym. Eng. Sci., 20(7) (1980) 499–504.

    Article  Google Scholar 

  10. C. A. Kim, D. S. Jo, H. J. Choi, C. B. Kim and M. S. Jhon, A high-precision rotating disk apparatus for drag reduction characterization, Polym. Test., 20(1) (2001) 43–48.

    Article  Google Scholar 

  11. P. Tong, W. I. Goldburg, J. S. Huang and T. A. Witten, Anisotropy in turbulent drag reduction, Phys. Rev. Lett., 65(22) (1990) 2780–2783.

    Article  Google Scholar 

  12. H. J. Choi, S. T. Lim, P. Y. Lai and C. K. Chan, Turbulent drag reduction and degradation of DNA, Phys. Rev. Lett., 89(8) (2002) 088302.

    Google Scholar 

  13. S. T. Lim, H. J. Choi, S. Y. Lee, J. S. So and C. K. Chan, Gamma-DNA induced turbulent drag reduction and its characteristics, Macromolecules, 36(14) (2003) 5348–5354.

    Article  Google Scholar 

  14. S. T. Lim, S. J. Park, C. K. Chan and H. J. Choi, Turbulent drag reduction characteristics induced by calf-thymus DNA, Physica, A 350(1) (2005) 84–88.

    Article  Google Scholar 

  15. S. A. Vanapalli, M. T. Islam and M. J. Solomon, Scission-induced bounds on maximum polymer drag reduction in turbulent flow, Phys. Fluids, 17(9) (2005) 095108.

    Google Scholar 

  16. W. Brostow; H. Ertepinar and R. P. Singh, Flow of Dilute Polymer-Solutions — Chain Conformations and Degradation of Drag Reducers, Macromolecules, 23(24) (1990) 5109–5118.

    Article  Google Scholar 

  17. S. T. Lim, C. H. Hong, H. J. Choi, P. Y. Lai and C. K. Chan, Polymer turbulent drag reduction near the theta point, Euro. Phys. Lett., 80 (2007) 58003.

    Google Scholar 

  18. S. A. Vanapalli, S. L. Ceccio and M. J. Solomon, Universal scaling for polymer chain scission in tubulence, PNAS, 103(45) (2006) 16660–16665.

    Article  Google Scholar 

  19. H. J. Choi, C. A. Kim, J. I. Sohn and M. S. Jhon, An exponential decay function for polymer degradation in turbulent drag reduction, Polym. Deg. Stab., 69 (2000) 341–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Additional information

This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, C.H., Choi, H.J. & Kim, J.H. Rotating disk apparatus for polymer-induced turbulent drag reduction. J Mech Sci Technol 22, 1908–1913 (2008). https://doi.org/10.1007/s12206-008-0731-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-008-0731-z

Keywords

Navigation