Skip to main content
Log in

Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agreement between the results of this paper and those of the finite element analyses validated the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Koizumi, The concept of FGM, Ceram. Trans. Func. Grad. Mater., 34 (1993) 3–10.

    Google Scholar 

  2. M. Teymur, N. R. Chitkara, K. Yohngjo, J. Aboudi, M. J. Pindera and S. M. Arnold, Thermoelastic Theory for the Response of Materials Functionally Graded in Two Directions, Int. J. Solids Struct., 33 (1996) 931–66.

    Article  Google Scholar 

  3. E. Feldman and J. Aboudi, Buckling analysis of functionally graded plates subjected to uniaxial loading, Compos. Struct., 38 (1997) 29–36.

    Article  Google Scholar 

  4. Yang and H. S. Shen, Dynamic response of initially stressed functionally graded rectangular thin plates, Compos. Struct., 54 (2001) 497–508.

    Article  Google Scholar 

  5. H. S. Shen, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, Int. J. Mech. Sci., 44 (2002) 561–584.

    Article  MATH  Google Scholar 

  6. T. Bailey and J. E. Hubbard, Distributed piezoelectric polymer active vibration control of a cantilever beam, J. Guidance, Control Dyn., 8 (1985) 605–611.

    Article  MATH  Google Scholar 

  7. F. Peng, A. Ng and Y. R., Hu, Actuator placement optimization and adaptive vibration control of plate smart structures, J. Intell Mater Syst Struct., 16 (2005) 263–271.

    Article  Google Scholar 

  8. W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, An electronically controlled piezoelectric insulin pump and valves, IEEE Trans. Sonics Ultrason., 25 (1978) 153–156.

    Google Scholar 

  9. S. Dong, X. Du, P. Bouchilloux and K. Uchino, Piezoelectric ring-morph actuation for valve application, J. Electroceram., 8 (2002) 155–161.

    Article  Google Scholar 

  10. C. Y. K. Chee, L. Tong and G. P. Steve, A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures, J. Intel. Mater. Syst. Str., 9 (1998) 3–19.

    Article  Google Scholar 

  11. L. Cao, S. Mantell and D. Polla, Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sensors Actuators A, 94 (2001) 117–125.

    Article  Google Scholar 

  12. X. Chen, C. H. J. Fox and S. McWilliam, Optimization of a cantilever microswitch with piezoelectric actuation, J. Intel. Mater. Syst. Str., 15 (2004) 823–834.

    Article  Google Scholar 

  13. Y. Ootao and Y. Tanigawa, Control of transient thermoelastic displacement of a functionally graded rectangular plate bonded to a piezoelectric plate due to nonuniform heating, Acta Mech., 148 (2001) 17–33.

    Article  MATH  Google Scholar 

  14. J. N. Reddy and Z. Q. Cheng, Three-dimensional solutions of smart functionally graded plates, ASME J. Appl. Mech., 68 (2001) 234–241.

    Article  MATH  Google Scholar 

  15. B. L. Wang and N. Noda, Design of smart functionally graded thermo-piezoelectric composite structure, Smart Mater. Struct., 10 (2001) 189–193.

    Article  Google Scholar 

  16. X. Q. He, T. Y. Ng, S. Sivashanker and K. M. Liew, Active control of FGM plates with integrated piezoelectric sensors and actuators, Int. J. Solids Struct., 38 (2001) 1641–1655.

    Article  MATH  Google Scholar 

  17. J. Yang, S. Kitipornchai and K. M. Liew, Nonlinear analysis of thermo-electro-mechanical behavior of shear deformable FGM plates with piezoelectric actuators, Int. J. Numer. Methods Eng., 59 (2004) 1605–1632

    Article  MATH  Google Scholar 

  18. J. Yang, S. Kitipornchai and K. M. Liew, Large amplitude vibration of thermo-electric-mechanically stressed FGM laminated plates, Computer Methods in Applied Mechanics and Engineering, 192, (2003) 3861–3885.

    Article  MATH  Google Scholar 

  19. X. L. Huang and H. S. Shen, Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, J. Sound Vib., 289 (2006) 25–53.

    Article  Google Scholar 

  20. F. Ebrahimi and A. Rastgoo, An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory, Thin-Walled Structures (2008) Article in press DOI: 10.1016/ j.tws.2008.03.008.

  21. F. Ebrahimi and A. Rastgoo, Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers, Smart Mater. Struct., 17 (2008) no. 015044.

    Google Scholar 

  22. A. J. Markworth, K. S. Ramesh and Jr. Parks, Modeling studies applied to functionally graded materials, J. Mater. Sci., 30 (1995) 2183–2193.

    Article  Google Scholar 

  23. J. N. Reddy and G. N. Praveen, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plate, Int. J. Solids Struct., 35 (1998) 4457–4476.

    Article  MATH  Google Scholar 

  24. R. C. Wetherhold and S. Wang, The use of functionally graded materials to eliminate or thermal deformation, Composite Sci. Tech., 56 (1996) 1099–1104.

    Article  Google Scholar 

  25. Y. Tanigawa, H. Morishita and S. Ogaki, Derivation of system of fundamental equations for a three dimensional thermoelastic field with nonhomogeneous material properties and its application to a semi infinite body, J. Thermal Stress, 22 (1999) 689–711.

    Article  MathSciNet  Google Scholar 

  26. H. F. Tiersten, Linear piezoelectric plate vibrations, plenum press, New York, USA, (1969).

    Google Scholar 

  27. D. O. Brush and B. O. Almroth, Buckling of bars plates and shells, McGraw-Hill, New York, USA, (1975).

    MATH  Google Scholar 

  28. Q. Wang, S. T. Quek and X. Liu, Analysis of piezoelectric coupled circular plate, Smart Mater Struct., 10 (2001) 229–239.

    Article  Google Scholar 

  29. R. D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, J. Appl Mech., 18 (1951) 31–38.

    MATH  Google Scholar 

  30. J. N. Reddy, Theory and analysis of elastic plates, Taylor and Francis, Philadelphia, USA, (1999).

    Google Scholar 

  31. X. Liu, Q. Wang and S. T. Quek, Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates, Int. J. Solids Struct., 39 (2002) 2129–2151.

    Article  MATH  Google Scholar 

  32. D. Halliday and R. Resnick, Physics, John Wiley and Sons, New York, USA, (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rastgoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, F., Rastgoo, A. & Kargarnovin, M.H. Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers. J Mech Sci Technol 22, 1058–1072 (2008). https://doi.org/10.1007/s12206-008-0303-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-008-0303-2

Keywords

Navigation