Skip to main content
Log in

Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

A reliable forecasting model for each Water Treatment Plant (WTP) influent characteristics is useful for controlling the plant’s operation. In this paper Auto-Regressive Integrated Moving Average (ARIMA) and Neural Network Auto-Regressive (NNAR) modeling techniques were applied on a WTP’s influent water characteristics time series to make some models for short-term period (to seven days ahead) forecasting. The ARIMA and NNAR models both provided acceptable generalization capability with R2s ranged from 0.44 to 0.91 and 0.45 to 0.92, respectively, for chloride and temperature. Although a more prediction performance was observed for NNAR in comparison with ARIMA for all studied series, the forecasting performance of models was further examined using Time Series Cross-Validation (TSCV) and Diebold-Mariano test. The results showed ARIMA is more accurate than NNAR for forecasting the horizon-daily values for CO2, Cl and Ca time-series. Therefore, despite of the good predictive performance of NNAR, ARIMA may still stands as better alternative for forecasting task of aforementioned series. Thus, as a general rule, not only the predictive performance using R2 statistic but also the forecasting performance of a model using TSCV, are need to be examined and compared for selecting an appropriate forecasting model for WTP’s influent characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974). “A new look at the statistical model identification.” Automatic Control, IEEE Transactions on, Vol. 19, No. 6, pp. 716–723, DOI: 10.1109/TAC.1974.1100705.

    Article  MathSciNet  MATH  Google Scholar 

  • Battiti, R. (1992). “First-and second-order methods for learning: Between steepest descent and Newton’s method.” Neural Computation, Vol. 4, No. 2, pp. 141–166, DOI: 10.1162/neco.1992.4.2.141.

    Article  Google Scholar 

  • Box, G. E. and Cox, D. R. (1964). “An analysis of transformations.” Journal of the Royal Statistical Society. Series B (Methodological), Vol. 26, No. 2, pp. 211–252.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E., Jenkins, G. M., and Reinsel, G. C. (2013). Time series analysis: Forecasting and control, John Wiley & Sons, DOI: 10.1002/9781118619193.

    MATH  Google Scholar 

  • Diebold, F. X. and Mariano, R. S. (1995). “Comparing predictive accuracy.” Journal of Business & Economic Statistics, Vol. 13, pp. 253–265, DOI: 10.1198/073500102753410444.

    Google Scholar 

  • Durbin, J. and Watson G. S. (1950). “Testing for serial correlation in least squares regression: I.” Biometrika, Vol. 37, Nos. 3–4, pp. 409–428, DOI: 10.2307/2332391.

    Article  MathSciNet  MATH  Google Scholar 

  • Field, A. (2009). Discovering statistics using SPSS:(and sex and drugs and rock ‘n’roll). 3rd ed, Sage, Los Angeles.

    Google Scholar 

  • Hadi, M., Mesdaghinia, A., Yunesian, M., Nasseri, S., Nodehi, R. N., Tashauoei, H., Jalilzadeh, E., and Zarinnejad, R. (2016). “Contribution of environmental media to cryptosporidiosis and giardiasis prevalence in Tehran: A focus on surface waters.” Environmental Science and Pollution Research, Vol. 23, No. 19, pp. 19317–19329, DOI: 10.1007/s11356-016-7055-9.

    Article  Google Scholar 

  • Hagan, M. T., Demuth, H. B., and Beale, M. H. (1996). Neural network design, Thomson Learning, Singapore.

    Google Scholar 

  • Hill, T., Marquez, L., O’Connor, M., and Remus, W. (1994). “Artificial neural network models for forecasting and decision making.” International Journal of Forecasting, Vol. 10, No. 1, pp. 5–15, DOI: 10.1016/0169–2070(94)90045–0.

    Article  Google Scholar 

  • Ho, S. L., Xie, M., and Goh, T. N. (2002). “A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction.” Computers & Industrial Engineering, Vol. 42, Nos. 2–4, pp. 371–375, DOI: 10.1016/S0360–8352(02)00036–0.

    Article  Google Scholar 

  • Hosseini, H. G., Luo, D., and Reynolds, K. J. (2006). “The comparison of different feed forward neural network architectures for ECG signal diagnosis.” Medical Engineering & Physics, Vol. 28, No. 4, pp. 372–378, DOI: 10.1016/j.medengphy.2005.06.006.

    Article  Google Scholar 

  • Howard, D. and Mark, B. (2000). Neural Network Toolbox For Use with MATLAB: Computation Visualization, Programming, User’s Guide Version 4, MathWorks, Inc.

    Google Scholar 

  • Hyndman, R. J. and Khandakar, Y. (2007). “Automatic time series for forecasting: The forecast package for R.” Journal of Statistical Softwore, Vol. 27, No. 3, DOI: 10.18637/jss.vo27.i03.

    Google Scholar 

  • Hyndman, R. J. and Koehler A. B. (2006). “Another look at measures of forecast accuracy.” International Journal of Forecasting, Vol. 22, No. 4, pp. 679–88, DOI: 10.1016/j.ijforecast.2006.03.001.

    Article  Google Scholar 

  • Franses, P. H. (2016). “A note on the mean absolute scaled error.” International Journal of Forecasting, Vol. 32, No. 1, pp. 20–22, DOI: 10.1016/j.ijforecast.2015.03.008.

    Article  Google Scholar 

  • Jafari Mansoorian, H., Karimaeec, M., Hadi, M., Jame Porazmey, E., Barati, F., and Baziar, M. (2017). “Feed forward artificial neural network model to estimate the TPH removal efficiency in soil washing process.” Archives of Hygiene Sciences, Vol. 6, No. 1, pp. 69–104.

    Google Scholar 

  • Khashei, M. and Bijari, M. (2010). “An artificial neural network (p, d, q) model for timeseries forecasting.” Expert Systems with Applications, Vol. 37, No. 1, 479–489, DOI: 10.1016/j.eswa.2009.05.044.

    Article  MATH  Google Scholar 

  • Khodadadi, M., Mesdaghinia, A., Nasseri, S., Ghaneian, M. T., Ehrampoush, M. H., and Hadi, M. (2016). “Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: A case study of Birjand.” Iran. Environmental Health Engineering and Management Journal, Vol. 3, pp. 81–89.

    Article  Google Scholar 

  • Khashei, M. and Bijari, M. (2011). “A novel hybridization of artificial neural networks and ARIMA models for time series forecasting.” Applied Soft Computing, Vol. 11, No. 2, pp. 2664–2675, DOI: 10.1016/j.asoc.2010.10.015.

    Article  Google Scholar 

  • Kusiak, A., Verma, A., and Wei, X. (2012). “A data-mining approach to predict influent quality.” Environmental Monitoring and Assessment, Vol. 185, pp. 2197–2210, DOI: 10.1007/s10661-012-2701-2.

    Article  Google Scholar 

  • Ljung, G. M. and Box, G. E. (1978). “On a measure of lack of fit in time series models.” Biometrika, Vol. 65, No. 2, pp. 297–303, DOI: 10.1093/biomet/65.2.297.

    Article  MATH  Google Scholar 

  • Maest, A. S., Kuipers J., Travers C. L., and Atkins D. A. (2005). Predicting Water Quality at Hardrock Mines: Methods and Models, Uncertainties and State-of-the-art, Earthworks, Washington, DC.

    Google Scholar 

  • Matalas, N. (1967). “Time series analysis.” Water Resources Research, Vol. 3, No. 3, pp. 817–829, DOI: 10.1029/WR003i003p00817.

    Article  Google Scholar 

  • Pankratz, A. (2009). Forecasting with univariate Box-Jenkins models: Concepts and cases, John Wiley & Sons, New Jersey.

    Google Scholar 

  • Panno, S. V., Keith, C. H., Hwang, H. H., Greenberg, S., Krapac, I. G., Landsberger, S., and O’Kelly, D. J. (2002). “Source identification of sodium and chloride contamination in natural waters: Preliminary results.” In Proceedings, 12th Annual Illinois Groundwater Consortium Symposium, Illinois Groundwater Consortium.

    Google Scholar 

  • Plazl, I., Pipus, G., Drolka, M., and Koloini, T. (1999). “Parametric sensitivity and evaluation of dynamic model for single-stage wastewater treatment plant.” Acta Chimica Slovenica, Vol. 46, No. 2, pp. 289–300.

    Google Scholar 

  • R Core Team (2016). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. URL: https://doi.org/www.R-project.org.

  • Rostami Fasih, Z., Mesdaghinia, A., Nadafi, K., Nabizadeh Nodehi, R., Mahvi, A. H., and Hadi, M. (2015). “Forecasting the air quality index based on meteorological variables and autocorrelation terms using artificial neural network.” Razi Journal of Medical Sciences, Vol. 22, No. 137, pp. 31–43.

    Google Scholar 

  • Rumelhart, D. E. and McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition: Foundations, MIT Press Cambridge, MA, USA.

    Google Scholar 

  • Salas, J. D. Obeysekera J. (1982). “ARMA model identification of hydrologic time series.” Water Resources Research, Vol. 18, No. 4, pp. 1011–1021, DOI: 10.1029/WR018i004p01011.

    Article  Google Scholar 

  • Salas, J. D. (1980). Applied modeling of hydrologic time series, Water Resources Publication.

    Google Scholar 

  • Salas, J. D., Boes, D. C., and Smith, R. A. (1982). “Estimation of ARMA models with seasonal parameters.” Water Resources Research, Vol. 18, No. 4, pp. 1006–1010, DOI: 10.1029/WR018i004p01006.

    Article  Google Scholar 

  • Solaimany-Aminabad, M., Maleki, A., and Hadi, M. (2013). “Application of Artificial Neural Network (ANN) for the prediction of water treatment plant influent characteristics.” Journal of Advances in Environmental Health Research, Vol. 1, No. 2, pp. 89–100, DOI: 10.22102/jaehr.2013.40130.

    Google Scholar 

  • Thoplan, R. (2014). “Simple v/s sophisticated methods of forecasting for mauritius monthly tourist arrival data.” International Journal of Statistics and Applications, Vol. 4, No. 5, pp. 217–223, DOI: 10.5923/j.statistics.20140405.01.

    Google Scholar 

  • Valipour, M., Banihabib, M. E., and Behbahani, S. M. R. (2013). “Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir.” Journal of Hydrology, Vol. 476, pp. 433–441, DOI: 10.1016/j.jhydrol.2012.11.017.

    Article  Google Scholar 

  • Wu, G.-D. and Lo, S.-L. (2008). “Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive networkbased fuzzy inference system.” Engineering Applications of Artificial Intelligence, Vol. 21, No. 8, pp. 1189–1195, DOI: 10.1016/j.engappai.2008.03.015.

    Article  Google Scholar 

  • Wu, G.-D. and Lo, S.-L. (2010). “Effects of data normalization and inherentfactor on decision of optimal coagulant dosage in water treatment by artificial neural network.” Expert Systems with Applications, Vol. 37, No. 7, pp. 4974–4983, DOI: 10.1016/j.eswa.2009.12.016.

    Article  Google Scholar 

  • Zhang, G., Eddy Patuwo, B. and Y Hu M. (1998). “Forecasting with artificial neural networks: The state of the art.” International Journal of Forecasting, Vol. 14, No. 1, pp. 35–62, DOI: 10.1016/S0169-2070(97)00044-7.

    Article  Google Scholar 

  • Zhang, G. P. (2003). “Time series forecasting using a hybrid ARIMA and neural network model.” Neurocomputing, Vol. 50, pp.159–175, DOI: 10.1016/S0925-2312(01)00702-0.

    Article  MATH  Google Scholar 

  • Zhang, G. P. and Qi, M. (2005). “Neural network forecasting for seasonal and trend time series.” European Journal of Operational Research, Vol. 160, No. 2, pp. 501–514, DOI: 10.1016/j.ejor.2003.08.037.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A., Nasseri, S., Aminabad, M.S. et al. Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics. KSCE J Civ Eng 22, 3233–3245 (2018). https://doi.org/10.1007/s12205-018-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1195-z

Keywords

Navigation