Skip to main content
Log in

Evaluating Permeability and Efficiency of Substrates by Using Permeation Grouting Sand Column Test

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This study design the sand column tests in the laboratory to evaluate permeability and efficiency of substrates by using permeation grouting technology. The results show, the coarser the test sand and the lower the substrates viscosity, the better the grouting effect. If more than 5% fines added will affect the grouting results significantly. Spearman’s rank correlation coefficient and stepwise regression method were applied to analysis 36 sets of sand columns testing results. The relationships among the effective size of test sand (D10), the viscosity of substrates and grouting height, grouting time, grouting rate and outflow rate were obtained. The results of this study might be helpful for applying the permeation grouting technology to remedy the contaminated groundwater in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbulut, S. and Saglamer, A. (2002). “Estimating the groutability of granular soil: A new approach,” Tunnelling and Underground Space Technology, Elsevier, Vol. 17, No. 4, pp. 371–380, DOI: 10.1016/S0886-7798(02)00040-8.

    Article  Google Scholar 

  • ASTM D421-85 (2002). Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants, ASTM International, West Conshohocken, PA.

  • ASTM D422-63 (2002). Standard Test Method for Particle-Size Analysis of Soils, ASTM International, West Conshohocken, PA.

  • ASTM D854-02 (2002). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA.

  • Axelsson, M., Gustafson G., and Fransson, A. (2009). “Stop mechanism for cementitious grouts at different water-to-cement ratio,” Tunnelling and Underground Space Technology, Elsevier, Vol. 24, No. 4, pp. 390–397, DOI: 10.1016/j.tust.2008.11.001.

    Article  Google Scholar 

  • Borden, R. C. (2007). “Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier,” Journal of Contaminant Hydrology, Elsevier, Vol. 94, Nos. 1–2, pp. 13–33, DOI: 10.1016/j.jconhyd.2007.06.002.

    Article  Google Scholar 

  • Burwell, E. B. (1985). “Cement and clay grouting of foundations: Practice of the corps of engineering,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 84, No. 1, pp. 1551/1–1551/22.

    Google Scholar 

  • Chadi, S. E. M., Jisuk, Y., and May, E. K. (2015). “Experimental study on penetration of bentonite grout through granular soils,” Canadian Geotechnical Journal, Vol. 52, No. 11, pp. 1850–1860, DOI: 10.1139/cgj-2014-0422.

    Article  Google Scholar 

  • Chang, S. C., Chiang, P. Y., Yu, Y. H., Chen, T. W., Luo, Y. S., Tsai, L. C., and Yu, K. C. (2014). “Soybean oil nanoemulsion and magnetite nanoparticle as remediation enhancers for river sediment: from lab to field,” Journal of Soil and Groundwater Remediation, Taiwan Association of Soil and Groundwater Environmental Protection, Vol. 1, No. 2, pp. 141–163, DOI: 10.6499/JSGR.2014.0102.004.

    Google Scholar 

  • Chang, Y. I. and Yang, C. C. (2007). Treatment of Trichloroethylene in Aqueous Solution Using Nanoscale Zero-valent Iron Emulsion, Unpublished master’s thesis. Kaohsiung Taiwan: Institute of Environmental Engineering of National Sun Yat-sen University.

    Google Scholar 

  • Chun, B. S., Lee, Y. J., and Chung, H. I. (2006). “Effectiveness of leakage control after application of permeation grouting to earth fill dam,” KSCE Journal of Civil Engineering, KSCE, Vol. 10, No. 6, pp. 405–414, DOI: 10.1007/BF02823979.

    Article  Google Scholar 

  • Clarke, W. J., Boyd, M. D., and Helal, M. (1992). “Ultrafine cement tests and dam test grouting.” Grouting, Soil Improvement and Geosynthetics, Geotechnical Special Publication, ASCE, No. 30, pp. 626–638.

    Google Scholar 

  • Dano, C., Hicher, P. Y., and Taillez, S. (2004). “Engineering properties of grouted sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 328–338, DOI: 10.1061/(ASCE)1090-0241(2004)130:3(328).

    Article  Google Scholar 

  • Dayaker, P., Venkat Raman, K., Raju, K. V. B. (2012). “Study on permeation grouting using cement grout in sandy soils,” IOSR Journal of Mechanical and Civil Engineering, Vol. 4, No. 4, pp. 5–10, DOI: 10.9790/1684-0440510.

    Article  Google Scholar 

  • Hayashi, S., Chai, X., Matsunaga, K., and Toki, A. (2006). “Drip injection of chemical grouts: A new apparatus,” Geotechnical Testing Journal, ASTM, Vol. 29, No. 2, pp. 108–116, DOI: 10.1520/GTJ12643.

    Google Scholar 

  • Helal, M. and Krizek, R. J. (1992). “Preferred orientation of pore structure in cement-grouted sand,” In R. H. Borden, R. D. Holtz, & I. Juran (Eds.), Geotechnical Special Publication, ASCE, 30 ed., Vol. 1, pp. 526–540, Publ by ASCE.

    Google Scholar 

  • Herndon, J. and Lenahan, T. (1976). “Grouting in Soils.” Vol. 2: Design and Operations Manual, Federal Highway Administration, Halliburton Services, Duncan, Oklahoma, Technical Report.

    Google Scholar 

  • Huang, C. L., Fan, J. C., Liao, K. W., and Lien, T. S. (2013). “A methodology to build a groutability formula via a heuristic algorithm,” KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 1, pp. 106–116. DOI: 10.1007/s12205-013-1847-y.

    Article  Google Scholar 

  • Huang, C. L., Fan, J. C., and Yang, W. J. (2007). “A study of applying micro-fine cement grout to sandy silt soil,” Sino-Geotech, Sino-Geotechnics Research and Development Foundation, Vol. 111, No. 1, pp. 71–82.

    Google Scholar 

  • Huang, Y. L. and Kao, C. M. (2012). Application of Long Lasting Substrate to Remediate Trichloroethylene Contaminated Groundwater, Unpublished master’s thesis. Kaohsiung Taiwan: Institute of Environmental Engineering of National Sun Yat-sen University.

    Google Scholar 

  • Incecik, M. and Ceren, I. (1995). “Cement grouting model tests,” Bulletin of The technical University of Istanbul, Vol. 48, No. 2, pp. 305–317.

    Google Scholar 

  • Ioannis N. M., Dimitrios N. C., and Basil K. P., (2015). “Penetrability of microfine cement grouts: Experimental investigation and fuzzy regression modeling,” Canadian Geotechnical Journal, Vol. 52, No. 7, pp. 868–882, DOI: 10.1139/cgj-2013-0297.

    Article  Google Scholar 

  • Ishihara, K. (1993). “Liquefaction and flow failure during earthquakes,” Geotechnique, ICE, Vol. 43, No. 3, pp. 629–644, DOI: 10.1680/geot.1993.43.3.351.

    Google Scholar 

  • Jan, C. D., Kuo, F. H., and Chang, L. Y. (2011). “An experimental study on the time-dependent rheological parameters for kaolin slurries,” Journal of Chinese Soil and Water Conservation, CSWCS, Vol. 42, No. 3, pp. 196–206.

    Google Scholar 

  • Jian, H. Y. and Kao, C. M. (2009). Use of In-situ Bioremediation to Treat Trichloroethylene Contaminated Groundwater, Unpublished doctoral dissertation. Kaohsiung Taiwan: Institute of Environmental Engineering of National Sun Yat-sen University.

    Google Scholar 

  • Jung, Y., Coulibaly, K. M., and Borden, R. C. (2006). “Transport of edible oil emulsions in clayey sands: 3D sandbox results and model validation,” Journal of Hydrologic Engineering, ASCE, Vol. 11, No. 3, pp. 238–244, DOI: 10.1061/(ASCE)1084-0699(2006)11:3(238).

    Article  Google Scholar 

  • Kao, C. M., Chen, S. C., Wang, J. Y., Chen, Y. L., and Lee, S. Z. (2003). “Remediation of PCE-contaminated aquifer by an in situ two-layer bio-barrier: Laboratory batch and column studies,” Water Research, Elsevier, Vol. 37, No. 1, pp. 27–38, DOI: 10.1016/S0043-1354(02)00254-3.

    Article  Google Scholar 

  • Kim, G. H. and Kim, J. H. (2004). “Sustainability of the in situ biobarriers for contaminant containment in residual soils,” KSCE Journal of Civil Engineering, KSCE, Vol. 8, No. 2, pp. 189–195. DOI: 10.1007/BF02829119.

    Article  Google Scholar 

  • Khayat, K. H., Ballivy, G., and Gaudreault, M. (1997). “High-performance cement grout for underwater crack injection,” Canadian Journal of Civil Engineering, NRC Research Press, Vol. 24, No. 3, pp. 405–418, DOI: 10.1139/l96-129.

    Article  Google Scholar 

  • Krizek, R. J., Liao, H. J., and Borden, R. H. (1992). Mechanical properties of microfine cement/sodium silicate grouted sand, In R. H. Borden, R. D. Holtz, & I. Juran (Eds.), Geotechnical Special Publication, 30 ed., Vol. 1, pp. 688–699, Publ by ASCE.

    Google Scholar 

  • Kutzner, C. (1996). Grouting of Rock and Soil, A. A. Balkema, Rotterdam.

    Google Scholar 

  • Ladd, R. S. (1978). “Preparing test specimens using undercompaction,” Geotechnical Testing Journal, ASTM, Vol. 1, No. 1, pp. 16–23, DOI: 10.1520/GTJ10364J. ISSN 0149-6115.

    Article  Google Scholar 

  • Liao, K. W., Fan, J. C., and Huang, C. L. (2011). “An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts,” Computers and Geotechnics, Elsevier, Vol. 38, No. 8, pp. 978–986, DOI: 10.1016/j.compgeo.2011.07.008.

    Article  Google Scholar 

  • Lin, C. H., Kuo, M. C., Tom., Su, C. Y., Liang, K. F., and Han, Y. L. (2012). “A nutrient injection scheme for in situ bioremediation,” Journal of Environmental Science and Health, Taylor & Francis Online, Part A, Vol. 47, No. 2, pp. 280–288, DOI: 10.1080/10934529.2012.640907.

    Article  Google Scholar 

  • Lin, C. L. and Lin, M. D. (2010). Transport Assessment of Applying Nano-scale Zero-valent Iron Emulsion in Groundwater, Unpublished master’s thesis. Taichung Taiwan: Institute of Environmental Engineering of National Chung Hsing University.

    Google Scholar 

  • Markou, I. N. and Atmatzidis, D. K. (2002). “Properties and performance of a pulverized fly ash grout,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 8, pp. 682–691, DOI: 10.1061/(ASCE)1090-0241(2002)128:8(682).

    Article  Google Scholar 

  • Markou, I. N. and Atmatzidis, D. K. (2003). “Mechanical behavior of a pulverized fly ash grouted sand,” Geotechnical Testing Journal, ASTM, Vol. 26, No. 4, pp. 450–460. DOI: 10.1520/GTJ11252J.

    Google Scholar 

  • Ni, C. K., James, and Lin, J. F. (2006). “The study of permeation grouting with microfine cement grout,” Scholarly Journal of National Taipei University of Technology, Vol. 39, No. 2, pp. 77–94.

    Google Scholar 

  • Nyer E. K. and Geogory B. P. (2004). “Treatment technology: Special delivery,” Groundwater Monitoring and Remediation, Wiley, Vol. 24, No. 1, pp. 34–40, DOI: 10.1111/j.1745-6592.2004.tb00701.x.

    Article  Google Scholar 

  • Ozgurel, H. G. and Vipulanandan, C. (2005) “Effect of grain size and distribution on permeability and mechanical behavior of acrylamide grouted sand.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 12, pp. 1457–1465, DOI: 10.1061/(ASCE)1090-0241(2005)131:12(1457).

    Article  Google Scholar 

  • Perret, S., Khayat, K. H., Gagnon, E., and Rhazi, J. (2002). “Repair of 130-year old masonry bridge using high-performance cement grout,” Journal of Bridge Engineering, ASCE, Vol. 7, No. 1, pp. 31–38, DOI: 10.1061/(ASCE)1084-0702(2002)7:1(31).

    Article  Google Scholar 

  • Rangeard, D., Phan, P. T., Martinez, J., and Lambert, S. (2016). “Mechanical behavior of fine-grained soil reinforced by sand columns: An experimental laboratory study,” Geotechnical Testing Journal, ASTM, Vol. 39, No. 4, 2016, pp. 648–657, DOI: 10.1520/GTJ20150152.

    Google Scholar 

  • Saiyouri, N., Bouasker, M., and Khelidj, A. (2008). “Gas permeability measurement on injected soils with cement grout,” Cement and Concrete Research, Elsevier, Vol. 38, No. 1, pp. 95–103, DOI: 10.1016/j.cemconres.2007.08.015.

    Article  Google Scholar 

  • Schwarz, L. G. and Chirumalla, M. (2007). “Effect of injection pressure on permeability and strength of microfine cement grouted sand.” Grouting for Ground Improvement: GSP 168 Geo-Denver 2007: New Peaks in Geotechniques.

    Google Scholar 

  • Sze, K. L. and Fan, J. C. (2008). A study on permeation grouting and quantity of injection with microfine cement grout, Unpublished master’s thesis. Taipei, Taiwan. Graduate Institute of Bioenvironmental Systems Engineering of Nation Taiwan University.

    Google Scholar 

  • Tekin, E. and Akbas, S. O. (2011). “Artificial neural networks approach for estimating the groutability of granular soils with cement-basis grouts,” Bulletin of Engineering Geology and the Environment, IAEG, Vol. 70, No. 1, pp. 153–161, DOI: 10.1007/s10064-010-0295-x.

    Article  Google Scholar 

  • Zebovitz, S., Krizek, R. J., and Atmatzidis, D. K. (1989). “Injection of fine sands with very fine cement grout,” Journal of Geotechnical Engineering, ASCE, Vol. 155, No. 12, pp. 1717–1733, DOI: 10.1061/(ASCE)0733-9410(1989)115:12(1717).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Hsin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, JC., Liu, WY., Liu, CH. et al. Evaluating Permeability and Efficiency of Substrates by Using Permeation Grouting Sand Column Test. KSCE J Civ Eng 22, 2843–2855 (2018). https://doi.org/10.1007/s12205-017-2535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-2535-0

Keywords

Navigation