Skip to main content
Log in

New nonlinear variable-parameter Muskingum models

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The Muskingum model has been widely utilized for flood routing by water resources engineers for decades. Since the relation between channel storage and weighted summation of inflow and outflow seems to be nonlinear, a constant exponent parameter is used to account for this nonlinearity. On the other hand, the nonlinear Muskingum models with constant parameters cannot address variation of Muskingum parameters during flood period. In this paper, fourteen new Muskingum models with variable parameters are proposed. In these models, the routing period is divided into two or three sub-periods and the proposed versions of the Muskingum models can possess parameters with different values in these sub-periods. This capability enhances the Muskingum flood routing approach to better capture the reach characteristics and subsequently improve the routing results. The flood routing results for the selected data set demonstrate that three variable-parameter model reduces the SSQ value more than 89% comparing with the best three constant-parameter Muskingum model in the literature. Additionally, it was concluded that considering x-parameter as a variable parameter during a flood period affects the parameter estimation more than imposing the K- and m-parameters to be variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzali, S. H. (2016). “Variable-parameter Muskingum model.” Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 40, No. 1), pp. 59–68, DOI: 10.1007/s40996-016-0001-8.

    Article  Google Scholar 

  • Afzali, S. H., Darabi, A., and Niazkar, M. (2016) “Steel frame optimal design using MHBMO algorithm.” International Journal of Steel Structures, Vol. 16, No. 2), pp. 455–465, DOI: 10.1007/s13296-016-6016-y.

  • Barati, R. (2011). “Parameter estimation of nonlinear Muskingum models using Nelder-Mead Simplex algorithm.” Journal of Hydrologic Engineering, Vol. 16, No. 11), pp. 946–954, DOI: 10.1061/(ASCE) HE.1943-5584.0000379.

    Article  Google Scholar 

  • Barati, R. (2013). “Application of excel solver for parameter estimation of the nonlinear Muskingum models.” KSCE Journal of Civil Engineering, Vol. 17, No. 5), pp. 1139–1148, DOI: 10.1007/s12205-013-0037-2.

    Article  Google Scholar 

  • Chu, H.-J. (2009). “The Muskingum flood routing model using a Neuro fuzzy approach.” KSCE Journal of Civil Engineering, Vol. 13, No. 5), pp. 371–376, DOI: 10.1007/s12205-009-0371-6.

    Article  Google Scholar 

  • Chu, H.-J. and Chang, L.-C. (2009). “Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model.” Journal of Hydrologic Engineering, Vol. 14, No. 9), pp. 1024–1027, DOI: 10.1061/(ASCE)HE.1943-5584.0000070.

    Article  Google Scholar 

  • Das, A. (2004). “Parameter estimation for Muskingum models.” Journal of Irrigation and Drainage Engineering, Vol. 130, No. 2), pp. 140–147, DOI: 10.1061/(ASCE)0733-9437(2004)130:2(140).

    Article  Google Scholar 

  • Easa, S. (2013). “Improved nonlinear muskingum model with variable exponent parameter.” Journal of Hydrologic Engineering, Vol. 18, No. 12), pp. 1790–1794, DOI: 10.1061/(ASCE)HE.1943-5584.0000702.

    Article  Google Scholar 

  • Geem, Z. W. (2006). “Parameter estimation for the nonlinear Muskingum model using the BFGS technique.” Journal of Irrigation and Drainage Engineering, Vol. 132, No. 5), pp. 474–478, DOI: 10.1061/(ASCE)0733-9437(2006)132:5(474).

    Article  Google Scholar 

  • Geem, Z. W. (2010). “Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search.” Journal of Hydrologic Engineering, Vol. 16, No. 8), pp. 684–688, DOI: 10.1061/(ASCE)HE.1943-5584.0000352.

    Article  MathSciNet  Google Scholar 

  • Gill, M. A. (1978). “Flood routing by the Muskingum method.” Journal of Hydrology, Vol. 36, No. 3), pp. 353–363, DOI: 10.1016/0022-1694(78)90153-1.

    Article  MathSciNet  Google Scholar 

  • Guang-Te, W. and Singh, V. (1992). “Muskingum method with variable parameters for flood routing in channels.” Journal of Hydrology, Vol. 134, No. 1), pp. 57–76, DOI: 10.1016/0022-1694(92)90028-T.

    Article  Google Scholar 

  • Karahan, H., Gurarslan, G., and Geem, Z. W. (2013). “Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm.” Journal of Hydrologic Engineering, Vol. 18, No. 3), pp. 352–360, DOI: 10.1061/(ASCE)HE.1943-5584. 0000608.

    Article  Google Scholar 

  • Karahan, H. (2014). “Discussion of “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa.” Journal of Hydrologic Engineering, Vol. 19, No. 10, 07014007, DOI: 10.1061/(ASCE)HE.1943-5584.0001045.

    Article  Google Scholar 

  • Karahan, H., Gurarslan, G., and Geem, Z. W. (2015). “A new nonlinear Muskingum flood routing model incorporating lateral flow.” Engineering Optimization, Vol. 47, No. 6), pp. 737–749, DOI: 10.1080/0305215X.2014.918115.

    Article  MathSciNet  Google Scholar 

  • Kim, J. H., Geem, Z. W., and Kim, E. S. (2001). “Parameter estimation of the nonlinear Muskingum model using harmony search.” JAWRA Journal of the American Water Resources Association, Vol. 37, No. 5), pp. 1131–1138, DOI: 10.1111/j.1752-1688.2001.tb03627.x.

    Article  Google Scholar 

  • Lamberti, P. and Pilati, S. (1988). “A simplified flood routing model: variable parameter Muskingum (VPM).” Meccanica, Vol. 23, No. 2), pp. 81–87, DOI: 10.1007/BF01556705.

    Article  MATH  Google Scholar 

  • Luo, J. and Xie, J. (2010). “Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm.” Journal of Hydrologic Engineering, Vol. 15, No. 10), pp. 844–851, DOI: 10.1061/(ASCE)HE.1943-5584.0000244.

    Article  Google Scholar 

  • Mohan, S. (1997). “Parameter estimation of nonlinear Muskingum models using genetic algorithm.” Journal of hydraulic engineering, Vol. 123, No. 2), pp. 137–142, DOI: 10.1061/(ASCE)0733-9429 (1997)123:2(137).

    Article  Google Scholar 

  • Niazkar, M. and Afzali, S. (2015a). “Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models.” Journal of Hydrologic Engineering, Vol. 20, No. 4, 04014055, DOI: 10.1061/(ASCE)HE.1943-5584.0001028.

    Article  Google Scholar 

  • Niazkar, M. and Afzali, S. H. (2015b). “Optimum design of lined channel sections.” Water Resources Management, Vol. 29, No. 6), pp. 1921–1932, DOI:10.1007/s11269-015-0919-9.

    Article  Google Scholar 

  • Niazkar, M. and Afzali, S. H. (2016a). “Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model.” Water Resources Management, DOI: 10.1007/s11269-016-1449-9.

  • Niazkar, M. and Afzali, S. H. (2016b). “Streamline performance of Excel in stepwise implementation of numerical solutions.” Computer Applications in Engineering Education, Vol. 24, No. 4), pp. 555–566. DOI: 10.1002/cae.21731.

    Article  Google Scholar 

  • O’Donnell, T., Pearson, C. P., and Woods, R. A. (1988). “Improved fitting for three-parameter Muskingum procedure.” Journal of Hydraulic Engineering, Vol. 114, No. 5), pp. 516–528, DOI: 10.1061/(ASCE)0733-9429(1988)114:5(516).

    Article  Google Scholar 

  • Perumal, M. (1994). “Hydrodynamic derivation of a variable parameter Muskingum method: 1. theory and solution procedure.” Hydrological sciences journal, Vol. 39, No. 5), pp. 431–442, DOI: 10.1080/02626669409492766.

    Article  Google Scholar 

  • Perumal, M. and Raju, K. G. R. (1998). “Variable-parameter stage hydrograph routing method. ii: Evaluation.” Journal of Hydrologic Engineering, Vol. 3, No. 2), pp. 115–121, DOI: 10.1061/(ASCE) 1084-0699(1998)3:2(115).

    Article  Google Scholar 

  • Ponce, V. and Changanti, P. (1994). “Variable-parameter Muskingum-Cunge method revisited.” Journal of Hydrology, Vol. 162, No. 3), pp. 433–439, DOI: 10.1016/0022-1694(94)90241-0.

    Article  Google Scholar 

  • Tang, X.-N., Knight, D. W., and Samuels, P. G. (1999). “Volume conservation in variable parameter Muskingum-Cunge method.” Journal of Hydraulic Engineering, Vol. 125, No. 6), pp. 610–620, DOI: 10.1061/(ASCE)0733-9429(1999)125:6(610).

    Article  Google Scholar 

  • Tung, Y.-K. (1985). “River flood routing by nonlinear Muskingum method.” Journal of Hydraulic Engineering, Vol. 111, No. 12), pp. 1447–1460, DOI: 10.1061/(ASCE)0733-9429(1985)111:12(1447).

    Article  Google Scholar 

  • Wilson, E. M. (1974). Engineering hydrology, Hampshire, United Kingdom: Macmillan Education LTD.

    Book  Google Scholar 

  • Xu, D.-M., Qiu, L., and Chen, S.-Y. (2011). “Estimation of nonlinear Muskingum model parameter using differential evolution.” Journal of Hydrologic Engineering, Vol. 17, No. 2), pp. 348–353, DOI: 10.1061/(ASCE)HE.1943-5584.0000432.

    Article  Google Scholar 

  • Yoon, J. and Padmanabhan, G. (1993). “Parameter estimation of linear and nonlinear Muskingum models.” Journal of Water Resources Planning and Management, Vol. 119, No. 5), pp. 600–610, DOI: 10.1061/(ASCE)0733-9496(1993)119:5(600).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Hosein Afzali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazkar, M., Afzali, S.H. New nonlinear variable-parameter Muskingum models. KSCE J Civ Eng 21, 2958–2967 (2017). https://doi.org/10.1007/s12205-017-0652-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0652-4

Keywords

Navigation