Skip to main content
Log in

A SPH-Lagrangian-Eulerian Approach for the Simulation of Concrete Gravity Dams under Combined Effects of Penetration and Explosion

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The damage prediction of high dams under the attacks of earth-penetrating weapons has gained significant importance in recent years. For this purpose, a SPH-Lagrangian-Eulerian coupled approach is proposed to describe the damage processes of concrete gravity dams subjected to the combined action of the penetration and explosion. The SPH method is used to model the concrete material with the large deformation near the penetration and explosion regions. The Lagrangian algorithm is adopted to simulate the high-velocity projectile and dam body with the small distortion. And the Eulerian algorithm is employed to describe the dynamic behavior of the water and air media. The validity of the penetration model is calibrated against a previous penetration test. Meanwhile, the SPH-Lagrangian-Eulerian coupled method is verified by implementing an underwater explosion test in a concrete cube. The computed distribution of cracking damage is consistent with the result of the experimental test, which validates the validity of the proposed SPH-Lagrangian-Eulerian coupling method. Subsequently, the penetration processes of a concrete gravity dam under the high-velocity projectile are presented. After the rapid penetration, the explosives are detonated in the dam with the initial penetration damage. The shock wave propagation characteristics in the dam and reservoir water are discussed. The failure processes and dynamic responses of the dam subjected to the combined action of the penetration and explosion are investigated. The influence of the initial penetration damage and the reservoir water on the failure processes of the dam subjected to the internal blast loading is also discussed. The results show that the penetration of the high-velocity projectile only causes a local damage to the concrete gravity dam. However, the combined effects of the penetration and explosion cause significantly more damage to the upper region of the dam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANSYS Inc. (2010). AUTODYN user manual version 13.

    Google Scholar 

  • Bazant, Z. P. and Planas J. (1998). Fracture and size effect in concrete and other quasi-brittle materials, CRC Press, Boca Raton.

    Google Scholar 

  • Benson, D. J. (1992). “Computational methods in Lagrangian and Eulerian hydrocodes.” Computer Methods in Applied Mechanics & Engineering, Vol. 99, No. 2, pp. 235–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Bischoff, P. H. and Perry, S. H. (1991). “Compressive behavior of concrete at high strain rate.” Materials and Structures, Vol. 24, No. 6, pp. 425–450, DOI: 10.1007/BF02472016.

    Article  Google Scholar 

  • Bolonkin, A. and Neumann, S. (2011). NEW SELF-PROPELLED PENETRATION BOMB, http://www.rxiv.org/pdf/1207.0013v1.pdf.

    Google Scholar 

  • Chen, J., Liu, X., and Xu, Q. (2017). “Numerical simulation analysis of damage mode of concrete gravity dam under close-in explosion.” KSCE Journal of Civil Engineering, Vol. 21, No.1, pp. 397–407, DOI: 10.1007/s12205-016-1082-4.

    Article  Google Scholar 

  • Chuzel-Marmot, Y., Ortiz, R., and Combescure, A. (2011). “Three dimensional SPH–FEM gluing for simulationof fast impacts on concrete slabs.” Computers Structures, Vol. 89, No. 23, pp. 2484–2494, DOI: 10.1016/j.compstruc.2011.06.002.

    Article  Google Scholar 

  • Ding, Y. Q., Tang, W. H., Zhang, R. Q., and Ran, X. W. (2013). “Determination and validation of parameters for Riedel-Hiermaier-Thoma concrete model.” Defence Science Journal, Vol. 63, No. 5, pp. 524–530, DOI: 10.14429/dsj.63.3866.

    Article  Google Scholar 

  • Fan, H. F., Bergel, G. L., and Li, S. F. (2016). “A hybrid peridynamics–SPH simulation of soil fragmentation by blast loads of buried explosive.” International Journal of Impact Engineering, Vol. 87, pp. 14–27, DOI: 10.1016/j.ijimpeng.2015.08.006.

    Article  Google Scholar 

  • Forrestal, M. J., Frew, D. J., Hanchak, S. J., and Brar, N. S. (1996). “Penetration of grout and concrete targets with ogive-nose steel projectiles.” International Journal of Impact Engineering, Vol. 18, No. 5, pp. 465–476, DOI: 10.1016/0734-743X(95)00048-F.

    Article  Google Scholar 

  • Frew, D. J., Hanchak, S. J., Green, M. L., and Forrestal, M. J. (1998). “Penetration of concrete targets with ogive-nose steel rods.” International Journal of Impact Engineering, Vol. 21, No. 6, pp. 489–497, DOI: 10.1016/S0734-743X(98)00008-6.

    Article  Google Scholar 

  • Fu, H. C., Erki, M. A., and Seckin, M. (1991). “Review of effects on loading rate on concrete in compression.” Journal of Structural Engineering, Vol. 117, No. 12, pp. 3645–3659, DOI: 10.1061/(ASCE)0733-9445(1991)117:12(3645)#sthash.v9TsL4Bu.dpuf.

    Article  Google Scholar 

  • Gharehdash, S., Shen, L. M., Gan, Y. X., and Floresjohnson, E. A. (2016). “Numerical investigation on fracturing of rock under blast using coupled finite element method and smoothed particle hydrodynamics.” Applied Mechanics & Materials, Vol. 846, pp. 102–107, DOI: 10.4028/www.scientific.net/AMM.846.102.

    Article  Google Scholar 

  • Gronlund, L. (2005). Earth-Penetrating Weapons, http://www.ucsusa.org/nuclear-weapons/us-nuclear-weapons-policy/earth-penetratingweapons.

    Google Scholar 

  • Hayhurst, C. J. and Clegg, R. A. (1997). “Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates.” International Journal of Impact Engineering, Vol. 20, No. 1, pp. 337–348, DOI: 10.1016/S0734-743X(97)87505-7.

    Article  Google Scholar 

  • Holomquist, T. J., Johnson, G. R., and Cook, W. H. (1993). “A computational constitutive model for concrete subjective to large strains, high strain rates, and high pressures.” Proceedings of the 14th international symposium on ballistics, Quecbec, Canada, pp. 591–600.

    Google Scholar 

  • Islam, A. K. M. A. and Yazdani, N. (2008). “Performance of AASHTO girder bridges under blast loading.” Engineering Structures, Vol. 30, No. 7, pp. 1922–1937, DOI: 10.1016/j.engstruct.2007.12.014.

    Article  Google Scholar 

  • Koneshwaran, S., Thambiratnam, D. P., and Gallage, C. (2015). “Blast response of segmented bored tunnel using coupled SPH–FE Method.” Structures, Vol. 2, pp. 58–71, DOI: 10.1016/j.istruc.2015.02.001.

    Article  Google Scholar 

  • Lai, J. Z., Guo, X. J., and Zhu, Y. Y. (2015). “Repeated penetration and different depth explosion of ultra-high performance concrete.” International Journal of Impact Engineering, Vol. 84, pp. 1–12, DOI: 10.1016/j.ijimpeng.2015.05.006.

    Article  Google Scholar 

  • Li, J. and Hao, H. (2013). “Numerical study of structural progressive collapse using substructure technique.” Engineering Structures, Vol. 52, No. 9, pp. 101–113, DOI:10.1016/j.engstruct.2013.02.016.

    Article  MathSciNet  Google Scholar 

  • Linsbauer, H. (2011). “Hazard potential of zones of weakness in gravity dams under impact loading conditions.” Front Frontiers of Structural and Civil Engineering, Vol. 5, No. 1, pp. 90–97, DOI: 10.1007/s11709-010-0008-3.

    Google Scholar 

  • Lu, L., Li, X., and Zhou, J. (2013). “Protection scheme for concrete gravity dam acting by strong underwater shock wave.” Journal of Computational & Theoretical Nanoscience, Vol. 19, No. 1, pp. 238–243, DOI: 10.1166/asl.2013.4647.

    Google Scholar 

  • Mittal, V., Chakraborty, T., and Matsagar, V. (2014). “Dynamic analysis of liquid storage tank under blast using coupled Euler–Lagrange formulation.” Thin-Walled Structures, Vol. 84, No. 84, pp. 91–111, DOI: 10.1016/j.tws.2014.06.004.

    Article  Google Scholar 

  • Mokhatar, S. N. (2015). “Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method.” Structural Engineering & Mechanics, Vol. 56, No. 6, pp. 917–938, DOI: 10.12989/sem.2015.56.6.917.

    Article  Google Scholar 

  • Prakash, A., Srinivasan, S. M., and Rao, A. R. M. (2015). “Numerical investigation on steel fibre reinforced cementitious composite panels subjected to high velocity impact loading.” Materials & Design, Vol. 83, pp. 164–175, DOI: 10.1016/j.matdes.2015.06.001.

    Article  Google Scholar 

  • Riedel, W., Thoma, K., Hiermaier, S., and Schmolinske, E. (1999). “Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes.” Proceedings of 9th International Symposium on interaction of the effect of munitions with structures, Berlin-Strausberg, Germany, pp. 315–22.

    Google Scholar 

  • Seo, S. I., Segong, M., and Son, S. W. (2017). “Global response of submerged floating tunnel against underwater explosion.” KSCE Journal of Civil Engineering, Vol. 19, No. 7, pp. 2029–2034, DOI 10.1007/s12205-015-0136-3.

    Article  Google Scholar 

  • Vignjevic, R., Vuyst, T. D., and Campbell, J. C. (2006). “A frictionless contact algorithm for meshless methods.” Computer Modeling in Engineering & Sciences, Vol. 13, No. 1, pp. 35–47.

    MathSciNet  MATH  Google Scholar 

  • Wang, G. H. and Zhang, S. R. (2014). “Damage prediction of concrete gravity dams subjected to underwater explosion shock loading.” Engineering Failure Analysis, Vol. 39, No. 4, pp. 72–91, DOI: 10.1016/j.engfailanal.2014.01.018.

    Article  Google Scholar 

  • Wang, G. H., Zhang, S. R., Kong, Y., and Li, H. B. (2015). “Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions.” Journal of Performance of Constructed Facilities, Vol. 29, No. 4, DOI: 10.1061/(ASCE)CF.1943-5509.0000589.

    Google Scholar 

  • Wang, H. F., Xiao, J. G., Zheng, Y. F., and Yu, Q. B. (2016). “Failure and ejection behavior of concrete materials under internal blast.” Shock and Vibration, Vol. 5, pp. 1–7, DOI: 10.1155/2016/8409532.

    Google Scholar 

  • Wang, Y. H., Zhai, X. M., Lee, S. C., and Wang, W. (2016). “Responses of curved steel-concrete-steel sandwich shells subjected to blast loading.” Thin-Walled Structures, Vol. 108, pp. 185–192, DOI: 10.1016/j.tws.2016.08.018.

    Article  Google Scholar 

  • Xiao, N., Zhou, X. P., and Gong, Q. M. (2017). “The modelling of rock breakage process by TBM rolling cutters using 3D FEM-SPH coupled method.” Tunnelling & Underground Space Technology, Vol. 61, pp. 90–103, DOI: 10.1016/j.tust.2016.10.004.

    Article  Google Scholar 

  • Xue, X. H., Yang, X. G., and Zhang, W. H. (2014). “Numerical modeling of arch dam under blast loading.” Journal of Vibration & Control, Vol. 20, No. 2, pp. 256–265, DOI: 10.1177/1077546312461031.

    Article  Google Scholar 

  • Yu, T. (2009). “Dynamical response simulation of concrete dam subjected to underwater contact explosion load.” World Congress on Csie, Vol. 1, No. 50, pp. 769–74, DOI: 10.1109/CSIE.2009.106.

    Google Scholar 

  • Yun, N. R., Shin, D. H., Ji, S. W., and Shim, C. S. (2014). “Experiments on blast protective systems using aluminum foam panels.” KSCE Journal of Civil Engineering, Vol. 17, No. 7, pp. 2153–2161, DOI: 10.1007/s12205-014-0092-3.

    Article  Google Scholar 

  • Yun, S. H. and Park, T. (2013). “Multi-physics blast analysis of reinforced high strength concrete.” KSCE Journal of Civil Engineering, Vol. 21, No. 4, pp. 777–788, DOI:10.1007/s12205-013-0093-7.

    Article  Google Scholar 

  • Zhang, S., R., Wang, G. H., Wang, C., Pang, B. H., and Du, C. B. (2014). “Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion.” Engineering Failure Analysis, Vol. 36, No. 1, pp. 49–64, DOI: 10.1016/j.engfailanal.2013.10.001.

    Article  Google Scholar 

  • Zhang, Z. C. and Qiang, H. F. (2011). “A hybrid particle-finite element method for impact dynamics.” Nuclear Engineering and Design, Vol. 241, No. 12, pp. 4825–4834, DOI: 10.1016/j.nucengdes.2011.08.052.

    Article  Google Scholar 

  • Zhang, Z. C., Qiang, H. F., Gao, W. R., and Gao. W. R. (2011). “Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation.” Engineering Structures, Vol. 33, No. 1, pp. 255–264, DOI: 10.1016/j.engstruct.2010.10.020.

    Article  Google Scholar 

  • Zhao, C. F. and Chen, J. Y. (2013). “Damage mechanism and mode of square reinforced concrete slab subjected to blast loading.” Theoretical and Applied Fracture Mechanics, Vols. 63–64, No. 1, pp. 54–62, DOI: 10.1016/j.tafmec.2013.03.006.

    Article  Google Scholar 

  • Zhu, F., Zhu, W. H., Fei, D., Yan, J. L., Xu, X. S., Chen, X., and Zhuo, J. J. (2012). “Modelling and analysis of arch dam withstand underwater explosion.” International Journal of Computer Applications in Technology, Vol. 48, No. 3, pp. 272–280, DOI: 10.1504/IJCAT.2013.056923.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaohui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Wang, G., Lu, W. et al. A SPH-Lagrangian-Eulerian Approach for the Simulation of Concrete Gravity Dams under Combined Effects of Penetration and Explosion. KSCE J Civ Eng 22, 3085–3101 (2018). https://doi.org/10.1007/s12205-017-0610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0610-1

Keywords

Navigation