Skip to main content
Log in

Optimum design of RC continuous beams considering unfavourable live-load distributions

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The cross-sections of Reinforced Concrete (RC) members are assumed in the preliminary design. With optimization, optimum dimensions of cross-sections providing required security measures can be obtained. Although, the area of the reinforcement bars is a computable value according to the cross-section, the amount and size of bars are also design variables in order to ensure the placement of bars providing adherence and other physical conditions. In this paper, the optimum design of RC continuous beams is presented by considering design constraints given in ACI-318 (Building Code Requirements for Structural Concrete). The most critical stress resultants of continuous beams are computed for all live load distribution patterns using three moment equations and were used in the analysis of continuous beam. A Random Search Technique (RST) is developed in order to minimize the material cost of the continuous beam. The RST is employed in different stages of optimization process such as cross-section and reinforcement bar optimization. The approach is effective to find the detailed optimum design of RC continuous beams with minimum cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coello, C. C., Hernandez, F. S., and Ferrera, F. A. (1997). “Optimal design of reinforced concrete beams using genetic algorithms.” Expert Syst. Appl., Vol. 12, No. 1, pp. 101–108, DOI: 10.1016/S0957-4174(96) 00084-X.

    Article  Google Scholar 

  • Rafiq, M. Y. and Southcombe, C. (1998). “Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking.” Comput. Struct., Vol. 69, No. 4, pp. 443–457, DOI: 10.1016/S0045-7949(98)00108-4.

    Article  MATH  Google Scholar 

  • Koumousis, V. K. and Arsenis, S. J. (1998). “Genetic algorithms in optimal detailed design of reinforced concrete members.” Comput-Aided Civ. Inf., Vol. 13, No. 1, pp. 43–52, DOI: 10.1111/0885-9507.00084.

    Article  Google Scholar 

  • Rath, D. P., Ahlawat, A. S., and Ramaswamy, A. (1999). “Shape optimization of RC flexural members.” J. Struct. Eng.-ASCE., Vol. 125, No. 12, pp. 1439–1446, DOI: 10.1061/(ASCE)0733-9445(1999) 125:12(1439).

    Article  Google Scholar 

  • Camp, C. V., Pezeshk, S., and Hansson, H. (2003). “Flexural design of reinforced concrete frames using a genetic algorithm.” J. Struct. Eng.-ASCE., Vol. 129, No. 1, pp. 105–11, DOI: 10.1061/(ASCE) 0733-9445(2003)129:1(105).

    Article  Google Scholar 

  • ACI 318M-05 (2005). Building code requirements for structural concrete and commentary, American Concrete Institute.

  • Ferreira, C. C., Barros, M. H. F. M., and Barros, A. F. M. (2003). “Optimal design of reinforced concrete T-sections in bending.” Eng. Struct., Vol. 25, No. 7, pp. 951–964, DOI: 10.1016/S0141-0296(03)00039-7.

    Article  Google Scholar 

  • Leps, M. and Sejnoha, M. (2003). “New approach to optimization of reinforced concrete beams.” Comput. Struct., Vol. 81, Nos. 18-19, pp. 1957–1966, DOI: 10.1016/S0045-7949(03)00215-3.

    Article  Google Scholar 

  • Barros, M. H. F. M., Martins, R. A. F., and Barros, A. F. M. (2005). “Cost optimization of singly and doubly reinforced concrete beams with EC2-2001.” Struct. Multidiscip. O., Vol. 30, No. 3, pp. 236–242, DOI: 10.1007/s00158-005-0516-2.

    Article  Google Scholar 

  • Govindaraj, V. and Ramasamy, J. V. (2005). “Optimum detailed design of reinforced concrete continuous beams using Genetic Algorithms.” Comput. Struct., Vol. 84, Nos. 1-2, pp. 34–48, DOI: 10.1016/j.compstruc.2005.09.001.

    Article  Google Scholar 

  • Govindaraj, V. and Ramasamy, J. V. (2007). “Optimum detailed design of reinforced concrete frames using genetic algorithms.” Eng. Optimiz., Vol. 39, No. 4, pp. 471–494, DOI: 10.1080/03052150601180767.

    Article  Google Scholar 

  • Guerra, A. and Kiousis, P. D. (2006). “Design optimization of reinforced concrete structures.” Comput Concrete, Vol. 3, No. 5, pp. 313–334, DOI: 10.12989/cac.2006.3.5.313.

    Article  Google Scholar 

  • Gil-Martin, L. M., Hernandez-Montes, E., and Aschheim, M. (2010). “Optimal reinforcement of RC columns for biaxial bending.” Mater. Struct., Vol. 43, No. 9, pp. 1245–1256, DOI: 10.1617/s11527-009-9576-x.

    Article  Google Scholar 

  • Barros, A. F. M., Barros, M. H. F. M., and Ferreira, C. C. (2012). “Optimal design of rectangular RC sections for ultimate bending strength.” Struct. Multidiscip. O., Vol. 45, No. 6, pp. 845–860, DOI: 10.1007/s00158-011-0717-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Fedghouche, F. and Tiliouine, B. (2012). “Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2.” Eng. Struct., Vol. 42, pp. 43–50, DOI: 10.1016/j.engstruct.2012.04.008.

    Article  Google Scholar 

  • Camp, C. V. and Akin, A. (2012). “Design of retaining walls using big Bang–Big crunch optimization.” J. Struct. Eng.-ASCE, Vol. 138, No. 3, pp. 438–448, DOI: 10.1061/(ASCE)ST.1943-541X.0000461.

    Article  Google Scholar 

  • Bekda G. and Nigdeli, S. M. (2012). “Cost optimization of t-shaped reinforced concrete beams under flexural effect according to ACI 318.” In: 3rd European Conference of Civil Engineering, December 2-4 2012, Paris, France.

    Google Scholar 

  • Timoshenko, S. P. (1953). History of strength of materials, McGraw-Hill, New York.

    Google Scholar 

  • Dias da Silva, V. (2006). Mechanics and strength of materials, Springer, Berlin Heidelberg New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebrail Bekdaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigdeli, S.M., Bekdaş, G. Optimum design of RC continuous beams considering unfavourable live-load distributions. KSCE J Civ Eng 21, 1410–1416 (2017). https://doi.org/10.1007/s12205-016-2045-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-2045-5

Keywords

Navigation