Skip to main content
Log in

Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran

  • Tunnel Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In this paper, groundwater inflow into Karaj Water Conveyance (KWC) tunnel was estimated using analytical and numerical methods in 12 different sections of the tunnel length. Further, these sections were rated from groundwater hazard point of view by means of Site Groundwater Rating (SGR) factor. Comparing results show a reasonable accordance between observed water ingress rate and those various methods. Since, KWC tunnel is excavated in fractured rocks with a high level of anisotropy, analytical methods provided highly overestimated water inflow rate. Furthermore all SGR, analytical and numerical results, show high levels of water inflow from fault zones. Maximum water inflow into tunnel was computed as 0.0536 and 0.0432 lit/sec/m using analytical and numerical methods, respectively. Based on SGR method, 11 out of 12 sections in KWC tunnel length are found to be in “No Risk” class with groundwater inflow of less than 0.04 lit/sec/m which are in agreement with analytical and numerical seepage values and also with the observed inflow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandis, S. C., Lumsden, A. C., and Barton, N. R. (1981). “Experimental studies of scale effects on the shear behavior of rock joints.” Int J Rock Mech Min Sci Geomech Abstr, Vol. 18, pp. 1–21, DOI: 10.1016/0148-9062(81)90262-X.

    Article  Google Scholar 

  • Butscher, C. (2012). “Steady-state groundwater inflow into a circular tunnel.” Tunn Undergr Space Technol, Vol. 32, No. 00, pp. 158–167, DOI: 10.1016/j.tust.2012.06.007.

    Article  Google Scholar 

  • Cesano, D., Bagtzoglou, A. C., and Olofsson, B. (2003). “Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: The heterogeneity index.” Tunn Undergr Space Technol, Vol. 18, No. 1, pp. 19–34.

    Article  Google Scholar 

  • Chen, S. G. and Zhao, J. (1998). “A study of UDEC modelling for blast wave propagation in jointed rock masses.” Int J Rock Mech Min Sci., Vol. 35, No. 1, pp. 93–99, DOI: 10.1016/S0148-9062(97)00322-7.

    Article  Google Scholar 

  • Custodio, E. and Llamas, M. G. (2005). Idrologia sotterranea, Dario Flaccovio Editore.

    Google Scholar 

  • Dunning, C. P., Feinstein, D. T., Hunt, R. J., and Krohelski, J. T. (2004). Simulation of ground-water flow, surface-eater flow, and a deep sewer tunnel system in the Menomonee Valley, Milwaukee, Wisconsin. US Geol Surv Sci Invest Rep 2004-5031.

    Google Scholar 

  • El Tani, M. (1999). “Water inflow into tunnels.” Proceedings of the World Tunnel Congress ITA-AITES, Oslo, Balkema, pp. 61–70.

    Google Scholar 

  • El Tani, M. (2003). “Circular tunnel in a semi-infinite aquifer.” Tunn Undergr Space Techn., Vol. 18, No. 1, pp. 49–55, DOI: 10.1016/S0886-7798(02)00102-5.

    Article  Google Scholar 

  • El Tani, M. (2010). “Helmholtz evolution of a semi-infinite aquifer drained by a circular tunnel.” Tunn Undergr Space Techn., Vol. 25, No. 1, pp. 54–62, DOI: 10.1016/j.tust.2009.08.005.

    Article  Google Scholar 

  • Farhadian, H. and Hatibeh, H. (2015). “Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock, World Academy of Science, Engineering and Technology.” International Journal of Environmental, Ecological, Geological and Geophysical Engineering, Vol. 9, No. 4, pp. 257–260.

    Google Scholar 

  • Farhadian, H., Aalianvari, A., and Katibeh, H. (2012). “Optimization of analytical equations of groundwater seepage into tunnels, a case study of Amirkabir tunnel.” Geol Soc India, Vol. 80, No. 1, pp. 96–100, DOI: 10.1007/s12594-012-0122-z.

    Article  Google Scholar 

  • Farhadian, H., Katibeh, H., and Huggenberger, P. (2016a). “Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses.” Environ Earth Sci., Vol. 75, No. 6, pp. 1–16, DOI: 10.1007/s12665-016-5332-z.

    Article  Google Scholar 

  • Farhadian, H., Katibeh, H., Peter Huggenberger, and Butscher, C. (2016b). “Optimum model extent for numerical simulation of tunnel inflow in fractured rock.” Tunn Undergr Space Techn., Vol. 60, pp. 21–29, DOI: 10.1016/j.tust.2016.07.014.

    Article  Google Scholar 

  • Fernandez, G. and Moon, J. (2010). “Excavation-induced hydraulic conductivity reduction around a tunnel, part 1: guideline for estimate of ground water inflow rate.” Tunn Undergr Space Technol., Vol. 25, No. 5, pp. 560–566, DOI: 10.1016/j.tust.2010.03.006.

    Article  Google Scholar 

  • Gattinoni, P. and Scesi, L. (2010). “An empirical equation for tunnel inflow assessment: Application to sedimentary rock masses.” Hydrogeol J., Vol. 18, No. 8, pp. 1797–1810, DOI: 10.1007/s10040-010-0674-1.

    Article  Google Scholar 

  • Gattinoni, P., Scesi, L., and Terrana, S. (2008). Hydrogeological risk analysis for tunneling in anisotropic rock masses, In: Proceedings of the ITA-AITES world tunnel congress, underground facilities for better environment & safety, Arga, India, pp. 1736-174.

    Google Scholar 

  • Goodman, R., Moye, D., Schalkwyk, A., and Javendel, I. (1965). “Groundwater inflow during tunnel driving.” Eng Geol., Vol. 1, pp. 150–162.

    Google Scholar 

  • Heuer, R. E. (1995). Estimating rock-tunnel water inflow, Proceeding of the Rapid Excavation and Tunneling Conference, June 18-21.

    Google Scholar 

  • Huangfu, M., Wang, M., Tan, Z. and Wang, X. (2010). “Analytical solutions for steady seepage into an underwater circular tunnel.” Tunnelling and Underground Space Technology., Vol. 25, No. 4, pp. 391–396, DOI: 10.1016/j.tust.2010.02.002.

    Article  Google Scholar 

  • Hwang, J. H. and Lu, C. C. (2007). “A semi-analytical method for analyzing the tunnel water inflow.” Tunn Undergr Space Technol, Vol. 22, No. 1, pp. 39–46, DOI: 10.1016/j.tust.2006.03.003.

    Article  Google Scholar 

  • Itasca (2011). Universal Distinct Element Code (UDEC) User’s Guide, 3rd Edition. Itasca Consulting Group Inc., Minneapolis, MN.

    Google Scholar 

  • Jacob, C. E. and Lohman, S. W. (1952). “Nonsteady flow to a well of constant drawdown in an extensive aquifer.” Transactions, American Geophysical Union, Vol. 33, No. 4, pp. 559–569, DOI: 10.1029/TR033i004p00559.

    Article  Google Scholar 

  • Jing, I. and Hudson, J. A. (2002). “Numerical methods in Rock Mechanics.” Int. J. Rock Mech. Min. Sci., Vol. 39, No. 4, pp. 409–427.

    Article  Google Scholar 

  • Karlsrud, K. (2001). “Water control when tunneling under urban areas in the Olso region.” NFF Publication, Vol. 12, No. 4, pp. 27–33.

    Google Scholar 

  • Katibeh, H. and Aalianvari, A. (2009). “Development of a new method for tunnel site rating from groundwater hazard point of view.” J. Appl. Sci., Vol. 9, No. 8, pp. 1496–1502, DOI: 10.3923/jas.2009.1496.1502.

    Article  Google Scholar 

  • Kawecki, M. W. (2002). “Transient flow to a horizontal water well.” Ground Water, Vol. 38, No. 6, pp. 842–50, DOI: 10.1111/j.1745-6584.2000.tb00682.x.

    Article  Google Scholar 

  • Lee, Ch. H. (1993). Fluid flow in discontinuous rocks, Chapman & Hall.

    Google Scholar 

  • Lei, S. (1999). “An analytical solution for steady flow into a tunnel.” Ground Water, Vol. 37, No. 1, pp. 23–26, DOI: 10.1111/j.1745-6584.1999.tb00953.x.

    Article  Google Scholar 

  • Liu, F., Xu, G., Huang, W., Hu, S. h., and Hu, M. (2014). “The effect of grouting reinforcement on groundwater seepage in deep tunnels.” Blucher Mechanical Engineering Proceedings, Vol. 1, No. 1, pp. 4727–37.

    Google Scholar 

  • Lombardi, G. (2002). “Quoted from: El Tani M (2003) Circular tunnel in a semi-infinite aquifer.” Tunneling and Underground Space Technology, Vol. 18, No. 1, pp. 49–55, DOI: 10.1016/S0886-7798(02)00102-5.

    Google Scholar 

  • Louis, C. (1974). “Introduction à l’hydraulique des roches [Introduction to rock hydraulics].” Bur Rech Geòl Min, Vol. 4, No. III, pp. 283–356.

    Google Scholar 

  • Marechal, J. C. and Perrochet, P. (2003). “New analytical solution for the study of hydraulic interaction between Alpine tunnels and groundwater.” Bull Soc. Géol Fr., Vol. 174, No. 5, pp. 441–448, DOI: 10.2113/174.5.441.

    Article  Google Scholar 

  • McFeat-Smith, I., MacKean, R., and Waldmo, O. (1998). Water inflows in bored rock tunnels in Hong Kong: Prediction, construction issues and control measures, ICE Conference on Urban Ground Engineering, Hong Kong.

    Google Scholar 

  • Molinero, J., Samper, J., and Juanes, R. (2002). “Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks.” Eng. Geol., Vol. 64, No. 4, pp. 369–386.

    Article  Google Scholar 

  • Nikvar Hassani, A., Katibeh, H., and Farhadian, H. (2015). “Numerical analysis of steady state groundwater inflow into Tabriz line 2 metro tunnel, northwestern Iran, with special consideration of model dimensions.” Bull. Eng. Geol. Environ., pp. 1–11, DOI: 10.1007/s10064-015-0802-1.

    Google Scholar 

  • Park, K., Owatsiriwong, A., and Lee, J. G. (2008). “Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: A revisit.” Tunn Undergr Space Technol, Vol. 23, No. 2, pp. 206–209, DOI: 10.1016/j.tust.2007.02.004.

    Article  Google Scholar 

  • Perrochet, P. and Dematteis, A. (2007). “Modeling transient discharge into a tunnel drilled in heterogeneous formation.” Ground Water, Vol. 45, No. 6, pp. 786–790, DOI: 10.1111/j.1745-6584.2007.00355.x.

    Article  Google Scholar 

  • Priest, S. (1993). Discontinuity Analysis for Rock Engineering, 1st Edn., Chapman and Hall, London.

    Book  Google Scholar 

  • Raymer, J. H. (2001). “Predicting groundwater inflow into hard-rock tunnels: Estimating the high-end of the permeability distribution.” In: proceeding of Rapid Excavation and Tunneling Conference 2001, pp. 1027–1038.

    Google Scholar 

  • Ribacchi, R., Graziani, A., and Boldini, D. (2002). “Previsione degli afflussi d’acqua in galleria e influenza sull’ambiente.” Meccanica e Ingegneria Delle Rocce, pp. 143–199.

    Google Scholar 

  • SCE Company (2005) Site hydrogeology reports for KRJ project.

    Google Scholar 

  • SCE Company (2006a). Geological and engineering geological reports for KWC project.

    Google Scholar 

  • SCE Company (2006b). Geological and Engineering Geological Report for Karaj Water Conveyance Tunnel Project (Lot1), Unpublished Report.

    Google Scholar 

  • Sharifzadeh, M., Karegar, S., and Ghorbani, M. (2013). “Influence of rock mass properties on tunnel inflow using hydromechanical numerical study.” Arab j Geosci, Vol. 6, No. 1, pp. 169–175.

    Article  Google Scholar 

  • Snow, D. T. (1969). “Anisotropie permeability of fractured media.” Water Resour Res., Vol. 5, No. 6, pp. 1273–1289, DOI: 10.1029/WR005i006p01273.

    Article  Google Scholar 

  • Zangerl, C., Eberhardt, E., Evans, K. F., and Loew, S. (2008). “Consolidation settlements above deep tunnels in fractured crystalline rock: Part 2, numerical analysis of the Gotthard highway tunnel case study.” Int. J. Rock Mech. Min. Sci., Vol. 45, No. 8, pp. 1211–1225, DOI: 10.1016/j.ijrmms.2008.02.005.

    Article  Google Scholar 

  • Zarei, H. R., Uromeihy, A., and Sharifzadeh, M. (2013). “A new Tunnel Inflow Classification (TIC) system through sedimentary rock masses.” Tunn Undergr Space Technol, Vol. 34, pp. 1–12, DOI: 10.1016/j.tust.2012.09.005.

    Article  Google Scholar 

  • Zhang, L. and Franklin, J. A. (1993). “Prediction of water flow into rock tunnels: An analytical solution assuming a hydraulic conductivity gradient.” Int. J. Rock Mech. Min Sci., Vol. 30, No. 1, pp. 37–46, DOI: 10.1016/0148-9062(93)90174-C.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Farhadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadian, H., Nikvar Hassani, A. & Katibeh, H. Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran. KSCE J Civ Eng 21, 2429–2438 (2017). https://doi.org/10.1007/s12205-016-0995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0995-2

Keywords

Navigation