Skip to main content
Log in

Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Fly Ash (FA) as a Supplementary Cementitious Material (SCM) increases the sustainability of concrete by decreasing CO2 emissions from cement production. The present study investigated the effect of nanosilica (nS) on the properties of cement paste and concrete, especially those containing FA. Fifteen cement paste and concrete mixtures with 15% to 25% of the cement content replaced with FA and four replacement ratios of nS (1.5%, 3%, 5%, 7.5%) were examined. The compressive strength development was measured and water absorption properties were tested by immersion and capillary absorption to investigate their early-age and long-term properties. The results demonstrate that the addition of nS accelerated the reactivity of early-age FA-based concrete and increased the strength development of cement paste and concrete over those without nS. The use of optimal ratios of up to 5% nS with 15% FA significantly improved the ITZ in FA concrete and noticeably decreased water absorption and the sorptivity coefficient of the concrete specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiqin, W., Chengzhi, Z., Mingshu, T., and Ningsheng, Z. (1999). “ASR in mortar bars containing silica glass in combination with high alkali and high fly ash contents.” Cement and Concrete Composites, Vol. 21, Nos. 5-6, pp. 375-381, DOI: 10.1016/S0958-9465(99)00020-7.

  • ASTM C109/C109M (2012). “Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens).” ASTM International, DOI: 10.1520/C0109_C0109M- 12.

  • ASTM C127 (2012). “Standard test method for density, relative density (Specific Gravity), and absorption of coarse aggregate.” ASTM International, West Conshohocken, PA, 10.1520/C0127-12.

  • ASTM C128 (2012). “Standard test method for density, relative density (Specific Gravity), and absorption of fine aggregate.” ASTM International, West Conshohocken, PA, DOI: 10.1520/C0128-07A.

  • C0143M-12.

  • ASTM C305 (2013). “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency.” ASTM International, West Conshohocken, PA, DOI: 10.1520/C0305.

  • BS 1881-122 (2011). Testing concrete, Method for determination of water absorption, British Standards Institution (BSI).

  • BS EN12390-3 (2009). Testing hardened concrete. Compressive strength of test specimens, British Standards Institution (BSI).

  • BS EN197-1 (2011). Cement Composition, specifications and conformity criteria for common cements, British Standards Institution (BSI).

  • Chen, B. and Liu, J. (2008). “Experimental application of mineral admixtures in lightweight concrete with high strength and workability.” Construction and Building Materials, Vol. 22, No. 4, pp. 655–659, DOI: 10.1016/j.conbuildmat.2006.10.006.

    Article  Google Scholar 

  • Cong, X., Gong, S., Darwin, D., and McCabe, S. L. (1992). “Role of silica fume in compressive strength of cement paste, mortar, and concrete.” ACI Materials Journal, Vol. 89, No. 4, pp. 375–387.

    Google Scholar 

  • Darwin, D. (1994). “The Interfacial transition zone: “Direct” Evidence on compressive response.” MRS Online Proceedings Library, Vol. 370, pp. 419–427, DOI: 10.1557/PROC-370-419.

    Article  Google Scholar 

  • Dinakar, P., Babu, K. G., and Santhanam, M. (2008). “Durability properties of high volume fly ash self compacting concretes.” Cement and Concrete Composites, Vol. 30, No. 10, pp. 880–886, DOI: 10.1016/j.cemconcomp.2008.06.011.

    Article  Google Scholar 

  • Ferraris, C. F., Obla, K. H., and Hill, R. (2001). “The influence of mineral admixtures on the rheology of cement paste and concrete.” Cement and Concrete Research, Vol. 31, No. 2, pp. 245–255, DOI: 10.1016/S0008-8846(00)00454-3.

    Article  Google Scholar 

  • Gaitero, J. J., Campillo, I., and Guerrero, A. (2008). “Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles.” Cement and Concrete Research, Vol. 38, Nos. 8-9, pp. 1112–1118, DOI: 10.1016/j.cemconres.2008.03.021.

    Article  Google Scholar 

  • Garboczi, E. J. (2009). “Concrete nanoscience and nanotechnology: Definitions and applications.” Nanotechnology in Construction 3, Z. Bittnar, P. M. Bartos, J. Nemecek, V. Šmilauer, and J. Zeman, eds., Springer Berlin Heidelberg, pp. 81–88.

    Chapter  Google Scholar 

  • Hall, C. (1989). “Water sorptivity of mortars and concretes: A review.” Magazine of Concrete Research, Vol. 41, No. 147, pp. 51–61, 10.1680/macr.1989.41.147.51.

    Article  Google Scholar 

  • Hannesson, G., Kuder, K., Shogren, R., and Lehman, D. (2012). “The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete.” Construction and Building Materials, Vol. 30, pp. 161–168, DOI: 10.1016/j.conbuildmat. 2011.11.046.

    Article  Google Scholar 

  • Hassan, K. E., Cabrera, J. G., and Maliehe, R. S. (2000). “The effect of mineral admixtures on the properties of high-performance concrete.” Cement and Concrete Composites, Vol. 22, No. 4, pp. 267–271, DOI: 10.1016/S0958-9465(00)00031-7.

    Article  Google Scholar 

  • Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., and Shah, S. P. (2012). “Effects of colloidal nanoSiO2 on fly ash hydration.” Cement and Concrete Composites, Vol. 34, No. 10, pp. 1095–1103, DOI: 10.1016/j.cemconcomp.2012.06.013.

    Article  Google Scholar 

  • Hwang, K., Noguchi, T., and Tomosawa, F. (2004). “Prediction model of compressive strength development of fly-ash concrete.” Cement and Concrete Research, Vol. 34, No. 12, pp. 2269–2276, DOI: 10.1016/j.cemconres.2004.04.009.

    Article  Google Scholar 

  • Jalal, M., Mansouri, E., Sharifipour, M., and Pouladkhan, A. R. (2012). “Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles.” Materials & Design, Vol. 34, pp. 389–400, DOI: 10.1016/j.matdes.2011.08.037.

    Article  Google Scholar 

  • Jayasree, C. and Gettu, R. (2008). “Experimental study of the flow behaviour of superplasticized cement paste.” Mater Struct, Vol. 41, No. 9, pp. 1581–1593, 10.1617/s11527-008-9350-5.

    Article  Google Scholar 

  • Jo, B.-W., Kim, C.-H., Tae, G.-h., and Park, J.-B. (2007). “Characteristics of cement mortar with nano-SiO2 particles.” Construction and Building Materials, Vol. 21, No. 6, pp. 1351–1355, DOI: 10.1016/j.conbuildmat.2005.12.020.

    Article  Google Scholar 

  • Kantro, D. L. (1980). “Influence of water-reducing admixtures on properties of cement paste—a miniature slump test.” Cement, Concrete and Aggregates, Vol. 2, No. 2, pp. 95–102, 10.1520/CCA10190J.

    Article  Google Scholar 

  • Kelham, S. (1988). “A water absorption test for concrete.” Magazine of Concrete Research, Vol. 40, No. 143, pp. 106–110, 10.1680/macr.1988.40.143.106.

    Article  Google Scholar 

  • Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., and Shah, S. P. (2012). “Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials.” Construction and Building Materials, Vol. 37, pp. 707–715, DOI: 10.1016/j.conbuildmat.2012.08.006.

    Article  Google Scholar 

  • Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., and Shah, S. P. (2013). “Influence of nano-silica agglomeration on fresh properties of cement pastes.” Construction and Building Materials, Vol. 43, pp. 557–562, DOI: 10.1016/j.conbuildmat.2013.02.066.

    Article  Google Scholar 

  • Korpa, A., Kowald, T., and Trettin, R. (2008). “Hydration behaviour, structure and morphology of hydration phases in advanced cementbased systems containing micro and nanoscale pozzolanic additives.” Cement and Concrete Research, Vol. 38, No. 7, pp. 955–962, DOI: 10.1016/j.cemconres.2008.02.010.

    Article  Google Scholar 

  • Land, G. and Stephan, D. (2012). “The influence of nano-silica on the hydration of ordinary Portland cement.” J Mater Sci, Vol. 47, No. 2, pp. 1011–1017, 10.1007/s10853-011-5881-1.

    Article  Google Scholar 

  • Li, G. (2004). “Properties of high-volume fly ash concrete incorporating nano-SiO2.” Cement and Concrete Research, Vol. 34, No. 6, pp. 1043–1049, DOI: 10.1016/j.cemconres.2003.11.013.

    Article  Google Scholar 

  • Li, H., Xiao, H.-g., Yuan, J., and Ou, J. (2004). “Microstructure of cement mortar with nano-particles.” Composites Part B: Engineering, Vol. 35, No. 2, pp. 185–189, DOI: 10.1016/S1359-8368(03)00052-0.

    Article  Google Scholar 

  • Li, Y.-X., Chen, Y.-M., Wei, J.-X., He, X.-Y., Zhang, H.-T., and Zhang, W.-S. (2006). “A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste.” Cement and Concrete Research, Vol. 36, No. 9, pp. 1740–1743, DOI: 10.1016/j.cemconres.2004. 07.007.

    Article  Google Scholar 

  • Lin, D. F., Lin, K. L., Chang, W. C., Luo, H. L., and Cai, M. Q. (2008). “Improvements of nano-SiO2 on sludge/fly ash mortar.” Waste Management, Vol. 28, No. 6, pp. 1081–1087, DOI: 10.1016/j.wasman. 2007.03.023.

    Article  Google Scholar 

  • Mindess, S., Young, J. F., and Darwin, D. (2002). Concrete (2nd Edition), Prentice Hall.

    Google Scholar 

  • Nath, P. and Sarker, P. (2011). “Effect of fly ash on the durability properties of high strength concrete.” Procedia Engineering, Vol. 14, pp. 1149–1156, DOI: 10.1016/j.proeng.2011.07.144.

    Article  Google Scholar 

  • Nili, M. and Ehsani, A. (2015). “Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume.” Materials & Design, Vol. 75, pp. 174–183, DOI: 10.1016/j.matdes.2015.03.024.

    Article  Google Scholar 

  • Oner, A., Akyuz, S., and Yildiz, R. (2005). “An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete.” Cement and Concrete Research, Vol. 35, No. 6, pp. 1165–1171, DOI: 10.1016/j.cemconres.2004. 09.031.

    Article  Google Scholar 

  • Papadakis, V. G. and Tsimas, S. (2002). “Supplementary cementing materials in concrete: Part I: efficiency and design.” Cement and Concrete Research, Vol. 32, No. 10, pp. 1525–1532, DOI: 10.1016/S0008-8846(02)00827-X.

    Article  Google Scholar 

  • Paramita, M. (2008). “Nanomechanical Properties of Cementitious Materials.” DOCTOR OF PHILOSOPHY, Northwestern University, EVANSTON, ILLINOIS.

    Google Scholar 

  • Qing, Y., Zenan, Z., Deyu, K., and Rongshen, C. (2007). “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume.” Construction and Building Materials, Vol. 21, No. 3, pp. 539–545, DOI: 10.1016/j.conbuildmat.2005. 09.001.

    Article  Google Scholar 

  • Qing, Y., Zenan, Z., Li, S., and Rongshen, C. (2006). “A comparative study on the pozzolanic activity between nano-SiO2 and silica fume.” J. Wuhan Univ. Technol.-Mat. Sci. Edit., Vol. 21, No. 3, pp. 153–157, 10.1007/BF02840907.

    Article  Google Scholar 

  • Quercia, G., Hüsken, G., and Brouwers, H. J. H. (2012). “Water demand of amorphous nano silica and its impact on the workability of cement paste.” Cement and Concrete Research, Vol. 42, No. 2, pp. 344–357, DOI: 10.1016/j.cemconres.2011.10.008.

    Article  Google Scholar 

  • RILEM CPC 11.2 (1982). CPC 11.2, Absorption of water by concrete by capillarity, 2nd edition, RILEM TC14-CPC, 10.1617/2351580117.017.

  • Sabir, B. B., Wild, S., and O’Farrell, M. (1998). “A water sorptivity test for martar and concrete.” Mater Struct, Vol. 31, No. 8, pp. 568–574, 10.1007/BF02481540.

    Article  Google Scholar 

  • Sahmaran, M., Yaman, I. O., and Tokyay, M. (2006). “Fresh properties of high volume fly ash self consolidating concrete.” 8th CANMET/ACI International Conference on Recent Advances in Concrete Technology, SP2006; 235-13, pp. 189–202.

    Google Scholar 

  • Sahmaran, M., Yaman, I. Ö., and Tokyay, M. (2009). “Transport and mechanical properties of self consolidating concrete with high volume fly ash.” Cement and Concrete Composites, Vol. 31, No. 2, pp. 99–106, DOI: 10.1016/j.cemconcomp.2008.12.003.

    Article  Google Scholar 

  • Said, A. M. and Zeidan, M. S. (2009). Enhancing the reactivity of normal and fly ash concrete using colloidal nano-silica, American Concrete Institute, ACI Special Publication, pp. 75–86.

    Google Scholar 

  • Sanchez, F. and Sobolev, K. (2010). “Nanotechnology in concrete–A review.” Construction and Building Materials, Vol. 24, No. 11, pp. 2060–2071, 10.1016/j.conbuildmat.2010.03.014.

    Article  Google Scholar 

  • Schoepfer, J. and Maji, A. (2009). “An investigation into the effect of silicon dioxide particle size on the strength of concrete.” American Concrete Institute Special Publication, Vol. 267, No. 5, pp. 45–58.

    Google Scholar 

  • Shih, J.-Y., Chang, T.-P., and Hsiao, T.-C. (2006). “Effect of nanosilica on characterization of Portland cement composite.” Materials Science and Engineering: A, Vol. 424, Nos. 1-2, pp. 266–274, DOI: 10.1016/j.msea.2006.03.010.

    Article  Google Scholar 

  • Sun, W., Yan, H., and Zhan, B. (2003). “Analysis of mechanism on water-reducing effect of fine ground slag, high-calcium fly ash, and low-calcium fly ash.” Cement and Concrete Research, Vol. 33, No. 8, pp. 1119–1125, DOI: 10.1016/S0008-8846(03)00022-X.

    Article  Google Scholar 

  • Termkhajornkit, P., Nawa, T., Yamashiro, Y., and Saito, T. (2009). “Selfhealing ability of fly ash–cement systems.” Cement and Concrete Composites, Vol. 31, No. 3, pp. 195–203, DOI: 10.1016/j.cemconcomp. 2008.12.009.

    Article  Google Scholar 

  • Uysal, M. and Akyuncu, V. (2012). “Durability performance of concrete incorporating Class F and Class C fly ashes.” Construction and Building Materials, Vol. 34, pp. 170–178, DOI: 10.1016/j.conbuildmat.2012.02.075.

    Article  Google Scholar 

  • Yahia, A. and Khayat, K. H. (1998). “Simple field tests to characterize fluidity and washout resistance of structural cement grout.” Cement, Concrete and Aggregates, Vol. 20, No. 1, 10.1520/CCA10448J.

  • Yildirim, H., Ilica, T., and Sengul, O. (2011). “Effect of cement type on the resistance of concrete against chloride penetration.” Construction and Building Materials, Vol. 25, No. 3, pp. 1282–1288, DOI: 10.1016/j.conbuildmat.2010.09.023.

    Article  Google Scholar 

  • Zhang, M.-H. and Islam, J. (2012). “Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag.” Construction and Building Materials, Vol. 29, pp. 573–580, DOI: 10.1016/j.conbuildmat.2011.11.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsani, A., Nili, M. & Shaabani, K. Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash. KSCE J Civ Eng 21, 1854–1865 (2017). https://doi.org/10.1007/s12205-016-0853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0853-2

Keywords

Navigation