Skip to main content
Log in

Effects of phosphate dispersants on the liquid limit, sediment volume and apparent viscosity of clayey soil/calcium-bentonite slurry wall backfills

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Soil-bentonite slurry-trench wall, usually consisting of sandy soil and Na-bentonite, is used extensively as in-situ engineered barriers for contaminant containment. Clayey soil/Ca-bentonite may be considered as an alternative backfill when Na-bentonite is scarce at some sites. Adding trace amount of phosphate dispersant to clayey soil/Ca-bentonite backfills may be advantageous to maintain the deflocculated structure of bentonite, which is benefit to minimizing increases in hydraulic conductivity of the backfills when attacked by contaminants. However, studies on the application of phosphate dispersants to the clayey soil/Ca-bentonite backfills are very limited. A series of laboratory tests are conducted for the measurements of liquid limit, sediment volume and apparent viscosity of the phosphate dispersant-amended backfills. The phosphate dispersants tested are sodium hexametaphosphate, sodium tripolyphosphate and sodium pyrophosphate with contents ranging from 0 to 2%. The results demonstrate that the values of liquid limit, sediment volume and apparent viscosity of the backfills decrease sharply when the dispersant content is relatively low (≤0.1 to 0.5%), while they change slightly at relatively high dispersant content (> 0.1 to 0.5%). The type and content of the dispersant as well as Ca-bentonite content have significant effects on the liquid limit, sediment volume and apparent viscosity of the backfill. The sodium hexametaphosphate is shown to have higher dispersibility compared with the others in terms of greater reduction in apparent viscosity, and its optimum content is suggested in a range of 0.1% to 0.5%. A power function is proposed which well quantifies the relationship between the measured apparent viscosity and liquid limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adebowale, K. O., Unuabonah, I. E., and Olu-Owolabi, B. I. (2005). “Adsorption of some heavy metal ions on sulfate- and phosphatemodified kaolin.” Applied Clay Science, Vol. 29, No. 2, pp. 145–148, DOI: 10.1016/j.clay.2004.10.003.

    Article  Google Scholar 

  • API 13A (2010). Specification for drilling fluids materials: API 13A, American Petroleum Institute (API), Washington, D.C.

  • Asada, M. and Horiuchi, S. (2005). “High-density bentonite slurry for seepage barriers.” Journal of Materials in Civil Engineering, Vol. 17, No. 2, pp. 178–187, DOI: 10.1061/(ASCE)0899-1561(2005) 17:2(178).

    Article  Google Scholar 

  • Cerato, A. B. and Luteneggerl, A. J. (2002). “Determination of surface area of fine-grained soils by the Ethylene Glycol Monoethyl Ether (EGME) method.” Geotechnical Testing Journal, Vol. 25, No. 3, pp. 315–321, DOI: 10.1520/GTJ11087J.

    Google Scholar 

  • D’Appolonia, D. J. (1980). “Soil-bentonite slurry trench cutoffs.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, No. 4, pp. 399–417.

    Google Scholar 

  • Du, Y. J., Fan, R. D., Reddy, K. R., Liu, S. Y., and Yang, Y. L. (2015). “Impacts of presence of lead contamination in the clayey soilcalcium bentonite cutoff wall backfills.” Applied Clay Science, Vol. 108, pp. 111–122, DOI: 10.1016/j.clay.2015.02.006.

    Article  Google Scholar 

  • Du, Y. J. and Hayashi, S. (2006). “A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material.” Applied Clay Science, Vol. 32, Nos. 1–2, pp. 14–24, DOI: 10.1016/j.clay.2006.01.003.

    Article  Google Scholar 

  • Du, Y. J., Jiang, N. J., Liu, S. Y., Jin, F., Singh, D. N., and Puppala, A. J. (2014). “Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin.” Canadian Geotechnical Journal, Vol. 51, No. 3, pp. 289–302, DOI: 10.1139/cgj-2013-0177.

    Article  Google Scholar 

  • Du, Y. J., Jiang, N. J., Shen, S. L., and Jin, F. (2012). “Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay.” Journal of Hazardous Materials, Vol. 225-226, No. 6, pp. 195–201, DOI: 10.1016/j.jhazmat.2012.04.072.

    Google Scholar 

  • Du, Y. J., Shen, S. L., Liu, S. Y., and Hayashi, S. (2009). “Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems.” Geotextiles and Geomembranes, Vol. 27, No. 3, pp. 232–239, DOI: 10.1016/j.geotexmem.2008.11.007.

    Article  Google Scholar 

  • Evans, J. C. (1994). “Hydraulic conductivity of vertical cutoff walls.” ASTM Special Technical Publication, Vol. 1142, pp. 79–93.

    Google Scholar 

  • Evans, J. C., Costa, M. J., and Cooley, B. (1995). “The state-of-stress in soil-Cbentonite slurry trench cutoff walls.” Geoenvironment 2000: Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, ASCE, pp. 1173–1191.

    Google Scholar 

  • Fan, R. D., Du, Y. J., Reddy, K. R., Liu, S. Y., and Yang, Y. L. (2014). “Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment.” Applied Clay Science, Vol. 101, pp. 119–127, DOI: 10.1016/j.clay. 2014.07.026

    Article  Google Scholar 

  • Gleason, M. H., Daniel, D. E., and Eykholt, G. R. (1997). “Calcium and sodium bentonite for hydraulic containment applications.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 5, pp. 438–445, DOI: 10.1061/(ASCE)1090-0241(1997)123:5(438).

    Article  Google Scholar 

  • Grim, R. E. (1968). Clay mineralogy (2nd ed.), McGraw-Hill, New York.

    Google Scholar 

  • Hong, C. S., Shackelford, C. D., and Malusis, M. A. (2012). “Consolidation and hydraulic conductivity of zeolite amended soil-bentonite backfills.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 1, pp. 15–25, DOI: 10.1061/(ASCE)GT.1943-5606.0000566.

    Article  Google Scholar 

  • Hunter, R. J. (1993). Introduction to modern colloid science (1st ed.), Oxford University Press, Oxford.

    Google Scholar 

  • Jo, H. Y., Benson, C. H., Shackelford, C. D., Lee, J. M., and Edil, T. B. (2005). “Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 4, pp. 405–417, DOI: 10.1061/(ASCE)1090-0241(2005)131:4(405).

    Article  Google Scholar 

  • Jo, H. Y., Katsumi, T., Benson, C. H., and Edil, T. B. (2001). “Hydraulic conductivity and swelling of non-prehydrated GCLs permeated with single species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 7, pp. 557–567, DOI: 10.1061/ (ASCE)1090-0241(2001)127:7(557).

    Article  Google Scholar 

  • Jung, H. S., Park, J. S., Lee, Y. J., Kim, S. K., Kong, J. Y., Chun, B. S., and Ryou, J. S. (2013). “Reduction of heavy metals and organic materials by atomized slag barrier in contaminated groundwater.” KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 7, pp. 1578–1586. DOI: 10.1007/s12205-013-0104-8.

    Article  Google Scholar 

  • Katsumi, T., Kamon, M., Inui, T., and Araki, S. (2008). “Hydraulic barrier performance of SBM cut-off wall constructed by the trench cutting and re-mixing deep wall method.” Proceedings of GeoCongress 2008@Geotechnics of Waste Management and Remediation, ASCE, pp. 628–635, DOI: 10.1061/40970(309)79.

    Google Scholar 

  • Khandelwal, A. and Rabideau, A. J. (2000). “Enhancement of soilbentonite barrier performance with the addition of natural humus.” Journal of Contaminant Hydrology, Vol. 45, Nos. 3–4, pp. 267–282. DOI: 10.1016/S0169-7722(00)00110-8.

    Article  Google Scholar 

  • Kim, S. and Palomino, A. M. (2009). “Polyacrylamide-treated kaolin: A fabric study.” Applied Clay Science, Vol. 45, No. 4, pp. 270–279, DOI: 10.1016/j.clay.2009.06.009.

    Article  Google Scholar 

  • Lagaly, G. (1989). “Principles of flow of kaolin and bentonite dispersions.” Applied Clay Science, Vol. 4, No. 2, pp. 105–123, DOI: 10.1016/ 0169-1317(89)90003-3.

    Article  Google Scholar 

  • Lagaly, G. and Ziesmer, S. (2003). “Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions.” Advances in Colloid and Interface Science, Vol. 100, pp. 105–128, DOI: 10.1016/S0001-8686(02)00064-7.

    Article  Google Scholar 

  • Lambe, T. W. (1954). “The improvement of soil properties with dispersants.” Boston Society of Civil Engineers, Vol. 41, No. 2, pp. 184–207.

    Google Scholar 

  • Lim, J., Choi, H., and Stark, T. D. (2011). “Numerical modeling of diffusion for volatile organic compounds through composite landfill liner systems.” KSCE Journal of Civil Engineering, KSCE, Vol. 15, No. 6, pp. 1033–1039, DOI: 10.1007/s12205-011-1293-7.

    Article  Google Scholar 

  • Ma, M. (2012). “The dispersive effect of sodium hexametaphosphate on kaolinite in saline water.” Clays and Clay Minerals, Vol. 60, No. 4, pp. 405–410, DOI: 10.1346/CCMN.2012.0600406.

    Article  Google Scholar 

  • Malusis, M. A, Barben, E. J., and Evans, J. C. (2009). “Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 5, pp. 664–672, DOI: 10.1061/(ASCE) GT.1943-5606.0000041.

    Article  Google Scholar 

  • Malusis, M. A., Maneval, J. E., Barben, E. J., Shackelford, C. D., and Daniels, E. R. (2010). “Influence of adsorption on phenol transport through soil-bentonite vertical barriers amended with activated carbon.” Journal of Contaminant Hydrology, Vol. 116, Nos. 1–4, pp. 58–72, DOI: 10.1016/j.jconhyd.2010.06.001.

    Article  Google Scholar 

  • Mishra, A. K., Ohtsubo, M., Li, L. Y., Higashi, T., and Park, J. (2009). “Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil bentonite mixtures.” Environmental Geology, Vol. 57, No. 5, pp. 1145–1153, DOI: 10.1007/s00254-008-1411-0.

    Article  Google Scholar 

  • Mitchell, J. K. and Soga, K. (2005). Fundamentals of soil benavior (3rd ed.), John Wiley and Sons, New Jersey.

    Google Scholar 

  • Olu-Owolabi, B. I. and Unuabonah, E. I. (2011). “Adsorption of Zn 2+ and Cu 2+ onto sulphate and phosphate-modified bentonite.” Applied Clay Science, Vol. 51, No. 1, pp. 170–173, DOI: 10.1016/j.clay. 2010.10.022.

    Article  Google Scholar 

  • Papo, A., Piani, L., and Ricceri, R. (2002). “Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: Rheological characterization.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 201, No. 1, pp. 219–230. DOI: 10.1016/S0927-7757(01)01024-X.

    Article  Google Scholar 

  • Penner, D. and Lagaly, G. (2001). “Influence of anions on the rheological properties of clay mineral dispersions.” Applied Clay Science, Vol. 19, No. 1, pp. 131–142, DOI: 10.1016/S0169-1317(01)00052-7.

    Article  Google Scholar 

  • Rabideau, A. J., Shen, P. L, and Khandelwal, A. (1999). “Feasibility of amending slurry walls with zero-valent iron.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 4, pp. 330–333, DOI: 10.1061/(ASCE)1090-0241(1999)125:4(330).

    Article  Google Scholar 

  • Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., and Lin, L. (2000). “Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids.” Geotextiles and Geomembranes, Vol. 18, Nos. 2–4, pp. 133–161, DOI: 10.1016/S0266-1144(99)00024-2.

    Article  Google Scholar 

  • Sharma, H. D. and Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, New York.

    Google Scholar 

  • Sridharan, A., Hayashi, S., and Du, Y. J. (2007). “Discussion of “Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations.” Canadian Geotechnical Journal, Vol. 44, No. 2, pp. 241–242, DOI: 10.1139/t06-133.

    Article  Google Scholar 

  • Sridharan, A. and Prakash, K. (1999). “Influence of clay mineralogy and pore-medium chemistry on clay sediment formation.” Canadian Geotechnical Journal, Vol. 36, No. 5, pp. 961–966, DOI: 10.1139/t99-045.

    Article  Google Scholar 

  • Sridharan, A., Rao, S. M., and Murthy, N. S. (1988). “Liquid limit of kaolinitic soils.” Geotechnique, Vol. 38, No. 2, pp. 191–198, DOI: 10.1680/geot.1988.38.2.191.

    Article  Google Scholar 

  • Tchillingarian, G. (1952). “Study of the dispersing agents.” Journal of Sedimentary Petrology, Vol. 22, No. 4, pp. 229–233.

    Article  Google Scholar 

  • Wang, Y. H. and Siu, W. K. (2006). “Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties.” Canadian Geotechnical Journal, Vol. 43, No. 6, pp. 601–617, DOI: 10.1139/t06-027.

    Article  Google Scholar 

  • Xue, Q., Li, J., and Liu, L. (2013). “Experimental study on anti-seepage grout made of leachate contaminated clay in landfill.” Applied Clay Science, Vol. 80, pp. 438–442, DOI: 10.1016/j.clay.2013.06.026.

    Article  Google Scholar 

  • Yoon, J. S. and El Mohtar, C. S. (2012). “Time dependent rheological behavior of modified bentonite suspensions.” Proceedings of GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, ASCE, pp. 1195–1204, DOI: 10.1061/9780784412121.123.

    Chapter  Google Scholar 

  • Yukselen-Aksoy, Y. and Reddy, K. R. (2013). “Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 1, pp. 175–184, DOI: 10.1061/(ASCE)GT.1943-5606.0000744.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YJ., Yang, YL., Fan, RD. et al. Effects of phosphate dispersants on the liquid limit, sediment volume and apparent viscosity of clayey soil/calcium-bentonite slurry wall backfills. KSCE J Civ Eng 20, 670–678 (2016). https://doi.org/10.1007/s12205-015-0567-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0567-x

Keywords

Navigation