Skip to main content
Log in

Durability of cement mortars incorporating limestone filler exposed to sodium sulfate solution

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

With the purpose of investigating the influence of both fineness levels and replacement ratios of limestone filler on sodium sulfate attack, cement mortar and paste specimens incorporating the material were exposed to 5% sodium sulfate solution for 1 year. The resistance of mortar specimens to sulfate attack was evaluated by visual appearance, expansion and compressive strength measurements. Additionally, microstructural observations such as XRD and SEM/EDS were also performed on paste samples stored in similar conditions of sulfate attack. Experimental results demonstrated that the worst performance was noted in the mortar specimens with high replacement ratio as well as high fineness level of limestone filler, showing extensive surface damages in addition to significant expansion and strength loss. Thus, it was observed that both high replacement ratio and high fineness level have potentially a negative effect in resisting sodium sulfate attack. This phenomenon is likely attributed to thaumasite formation as a result of sulfate attack rather than gypsum formation. The present study may suggest useful information on both reasonable replacement ratio and fineness level for the application of limestone filler in sulfate environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Amoudi, O. S. B., Maslehuddin, M., and Saadi, M. M. (1995). “Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements.” ACI Mater. J., Vol. 92, No. 1, pp. 15–24.

    Google Scholar 

  • Bensted, J. (2003). “Thaumasite — direct, woodfordite and other possible formation routes.” Cem. Concr. Compos., Vol. 25, No. 8, pp. 873–877.

    Article  Google Scholar 

  • Bickley, J. A., Hemmings, R. T., Hooton, R. D., and Balinski, J. (1994). “Thaumasite related deterioration of concrete structures.” In Concrete Technology, Past, Present and Future, ACI SP-144, American Concrete Institute, pp. 159–175.

    Google Scholar 

  • Blanco-Varela, M. T., Aguilera, J., and Martinez-Ramirez, S. (2006). “Effect of cement C3A content, temperature and storage medium on thaumasite formation in carbonated mortars.” Cem. Concr. Res., Vol. 36, No. 4, pp. 707–715.

    Article  Google Scholar 

  • Brown, P. and Hooton, R. D. (2002). “Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements.” Cem. Concr. Compos., Vol. 24, No. 3, pp. 361–370.

    Article  Google Scholar 

  • Collepardi, M. (1999). “Thaumasite formation and deterioration in historic buildings.” Cem. Concr. Res., Vol. 21, No. 2, pp. 147–154.

    Article  Google Scholar 

  • Figg, A. (1999). “Field studies of sulfate attack on concrete.” In: Marchand, J. and Skalny, J., ed., Material science of concrete special volume: Sulfate attack mechanism, The American Ceramic Society, Westerville, OH, pp. 315–324.

    Google Scholar 

  • Gollop, R. S. and Taylor, H. F. W. (1992). “Microstructural and microanalytical studies of sulfate attack: I. Ordinary Portland cement paste.” Cem. Concr. Res., Vol. 22, No. 6, pp. 1027–1038.

    Article  Google Scholar 

  • Hartshorn, S. A., Sharp, J. H., and Swamy, R. N. (1999). “Thaumasite formation in Portland-limestone cement pastes.” Cem. Concr. Res., Vol. 29, No. 8, pp. 1331–1340.

    Article  Google Scholar 

  • Hartshorn, S. A., Sharp, J. H., and Swamy, R. N. (2002). “The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution.” Cem. Concr. Compos., Vol. 24, No. 3, pp. 351–359.

    Article  Google Scholar 

  • Hobbs, D. W. and Taylor, M. G. (2000). “Nature of the thaumasite sulfate attack mechanism in field concrete.” Cem. Concr. Res., Vol. 30, No. 4, pp. 529–533.

    Article  Google Scholar 

  • Hooton, R. D. and Emery, J. J. (1990). “Sulfate resistance of a Canadian slag cement.” ACI Mater. J., Vol. 87, No. 6, pp. 547–555.

    Google Scholar 

  • Irassar, E. F. (2009). “Sulfate attack on cementitious materials containing limestone filler-A review.” Cem. Concr. Res., Vol. 39, No. 3, pp. 241–254.

    Article  Google Scholar 

  • Irassar, E. F., Bonavetti, V. L., and Gonzalez, M. (2003). “Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature.” Cem. Concr. Res., Vol. 33, No. 1, pp. 31–41.

    Article  Google Scholar 

  • Irassar, E. F., Bonavetti, V. L., Trezza, M. A., and Gonzalez, M. A. (2005). “Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20.” Cem. Concr. Compos., Vol. 27, No. 1, pp. 77–84.

    Article  Google Scholar 

  • Kamile, T., Burak, F., Bulent, B., and Akın, I. A. (2009). “Effects of limestone replacement ratio on the sulfate resistance of Portland limestone cement mortars exposed to extraordinary high sulfate concentrations.” Construct. Build. Mater., Vol. 23, No. 7, pp. 2534–2544.

    Article  Google Scholar 

  • Khatri, R. P. and Sirivivatnanon, V. (1997). “Role of permeability in sulphate attack.” Cem. Concr. Res., Vol. 27, No. 8, pp. 1179–1189.

    Article  Google Scholar 

  • Kohler, S., Heinz, D., and Urbonas, L. (2006). “Effect of ettringite on thaumasite formation.” Cem. Concr. Res., Vol. 36, No. 4, pp. 679–706.

    Article  Google Scholar 

  • Lawrence, C. D. (1992). “The influence of binder type on sulfate resistance.” Cem. Concr. Res., Vol. 22, No. 6, pp. 1047–1058.

    Article  Google Scholar 

  • Lee, S. T., Hooton, R. D., Kim, S. S., and Kim, E. K. (2006). “Effect of fineness of high-alumina ground blastfurnace slag on magnesium sulphate attack.” Mag. Concr. Res., Vol. 58, No. 5, pp. 301–311.

    Article  Google Scholar 

  • Lee, S. T., Hooton, R. D., Jung, H. S., Park, D. H., and Choi, C. S. (2008). “Effect of limestone filler on the deterioration of mortars and pastes exposed to sulfate solutions at ambient temperature.” Cem. Concr. Res., Vol. 38, No. 1, pp. 68–76.

    Article  Google Scholar 

  • Lucie, S., Mohammed, S., and Peter, J. M. B. (2003). “Influence of mix proportions on rheology of cement grouts containing limestone powder.” Cem. Concr. Compos., Vol. 25, No. 7, pp. 737–749.

    Article  Google Scholar 

  • Mazloom, M., Ramezanianpour, A. A., and Brooks, J. J. (2004). “Effect of silica fume on mechanical properties of high-strength concrete.” Cem. Concr. Compos., Vol. 26, No. 4, pp. 347–357.

    Article  Google Scholar 

  • Mehta, P. K. (1983). “Mechanism of sulfate attack on Portland cement concrete-another look.” Cem. Concr. Res., Vol. 13, No. 3, pp. 401–406.

    Article  Google Scholar 

  • Menendez, G., Bonavetti, V., and Irassar, E. F. (2003). “Strength development of ternary blended cement with limestone filler and blast-furnace slag.” Cem. Concr. Compos., Vol. 25, No. 1, pp. 61–67.

    Article  Google Scholar 

  • Neto, C. S., and Campiteli, V. C. (1990). “The influence of limestone additions on the rheological properties and water retention value of Portland cement slurries.” P. Klieger, R. D. Hooton (Eds.), Carbonate Additions to Cement, STP 1064, ASTM, Philadelphia, pp. 24–29.

    Google Scholar 

  • Qian, X. and Li, Z. (2001). “The relationship between stress and strain for high-performance concrete with metakaolin.” Cem. Concr. Res., Vol. 31, No. 11, pp. 1607–1611.

    Article  Google Scholar 

  • Ramezanianpour, A. M. and Hooton, R. D. (2013). “Thaumasite sulfate attack in Portland and Portland-limestone cement mortars exposed to sulfate solution.” Construct. Build. Mater., Vol. 40, pp. 162–1734.

    Article  Google Scholar 

  • Sahu, S., Badger, S., and Thaulow, N. (2002). “Evidence of thaumasite formation in Southern California concrete.” Cem. Concr. Compos., Vol. 24, No. 3, pp. 379–384.

    Article  Google Scholar 

  • Santhanam, M., Cohen, M. D., and Olek, J. (2003). “Effects of gypsum formation on the performance of cement mortars during external attack.” Cem. Concr. Res., Vol. 33, No. 3, pp. 325–332.

    Article  Google Scholar 

  • Sawicz, Z. and Heng, S. S. (1996). “Durability of concrete with addition of limestone powder.” Mag. Concr. Res., Vol. 48, No. 1, pp. 131–137.

    Article  Google Scholar 

  • Skaropoulou, A., Sotiriadis, K., Kakali, G., and Tsivilis, S. (2013). “Use of mineral admixtures to improve the resistance of limestone cement concrete against thauamsite form of sulfate attack.” Cem. Concr. Compos., Vol. 37, pp. 267–275.

    Article  Google Scholar 

  • Sotiriadis, K., Nikolopoulou, E., Tsivilis, S., Pavlou, A., Chaniokakis, E., and Swamy, R. N. (2013). “The effect of chlorides on the thaumasite form of sulfate attack of limestone cement concrete containing mineral admixtures at low temperature.” Construct. Build. Mater., Vol. 43, pp. 156–164.

    Article  Google Scholar 

  • Tian, B. and Cohen, M. D. (2000). “Expansion of Alite paste caused by gypsum formation during sulfate attack.” J. Mater. Civ. Eng., Vol. 12, No. 1, pp. 24–25.

    Article  Google Scholar 

  • Torii, K., Taniguchi, K., and Kawamura, M., (1995). “Sulfate resistance of high fly ash content concrete.” Cem. Concr. Res., Vol. 25, No. 4, pp. 759–768.

    Article  Google Scholar 

  • Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J. H., and Swamy, R. N. (2003a). “Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar.” Cem. Concr. Compos., Vol. 25, No. 8, pp. 969–976.

    Article  Google Scholar 

  • Tsivilis, S., Tsantilas, J., Kakali, G., Chaniotakis, E., and Sakellariou, A. (2003b). “The permeability of Portland limestone cement concrete.” Cem. Concr. Res., Vol. 33, No. 9, pp. 1465–1471.

    Article  Google Scholar 

  • Vuk, T., Tinta, V., Gabrovsek, R., and Kaucic, V. (2001). “The effects of limestone addition, clinker type and fineness on properties of Portland cement.” Cem. Concr. Res., Vol. 31, No. 1, pp. 135–139.

    Article  Google Scholar 

  • Vuk, T., Gabrovsek, R., and Kaucic, V. (2002). “The influence of mineral admixtures on sulfate resistance of limestone cement pastes aged in cold MgSO4 solution.” Cem. Concr. Res., Vol. 32, No. 6, pp. 943–948.

    Article  Google Scholar 

  • Wee, T. H., Suryavanshi, A. K., Wong, S. F., and Anisur Rahman, K. M. (2000). “Sulfate resistance of concrete containing mineral admixture.” ACI Mater. J., Vol. 97, No. 5, pp. 536–549.

    Google Scholar 

  • Zelic, J., Krstulovic, R., Tkalcec, E., and Krolo, P. (1999). “Durability of the hydrated limestone-silica fume Portland cement mortars under sulphate attack.” Cem. Concr. Res., Vol. 29, No. 6, pp. 819–826.

    Article  Google Scholar 

  • Zhou, Q., Hill, J., Cripps, E. A., Lynsdale, C. J., and Sharp, J. H. (2006). “The role of pH in thaumasite sulfate attack.” Cem. Concr. Res., Vol. 36, No. 1, pp. 160–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungtae Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryou, J., Lee, S., Park, D. et al. Durability of cement mortars incorporating limestone filler exposed to sodium sulfate solution. KSCE J Civ Eng 19, 1347–1358 (2015). https://doi.org/10.1007/s12205-012-0457-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-0457-4

Keywords

Navigation