Skip to main content
Log in

Sirtuin functions in the brain: From physiological to pathological aspects

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases involved in multiple biological functions including metabolism, inflammation, stress resistance and aging. In mammals, there are seven members (Sirt1—Sirt7), with diversities in their subcellular localizations and enzymatic activities. Here, we review the functions of sirtuins, with a focus on their roles in normal brain physiology such as neural development regulation, body homeostasis maintenance, and memory formation. We also discuss the role of sirtuins in a variety of brain diseases including stroke, Alzheimer’s, Parkinson’s, and motor neuron dysfunction. Because of the emerging functions of sirtuins in brain physiology and pathology, drugs targeting sirtuins may offer potential therapeutic values for brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haigis M C, Sinclair D A. Mammalian sirtuins: Biological insights and disease relevance [J]. Annual Review of Pathology: Mechanisms of Disease, 2010, 5(1): 253–295.

    Google Scholar 

  2. Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in saccharomyces cerevisiae [J]. Genetics, 1987, 116(1): 9–22.

    Google Scholar 

  3. Michishita E, Park J Y, Burneskis J M, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins [J]. Molecular Biology of the Cell, 2005, 16(10): 4623–4635.

    Google Scholar 

  4. Vaziri H, Dessain S K, ng Eaton E, et al. HSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase [J]. Cell, 2001, 107(2): 149–159.

    Google Scholar 

  5. Hisahara S, Chiba S, Matsumoto H, et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15599–15604.

    Google Scholar 

  6. Sugino T, Maruyama M, Tanno M, et al. Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells [J]. FEBS Letters, 2010, 584(13): 2821–2826.

    Google Scholar 

  7. North B J, Marshall B L, Borra M T, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase [J]. Molecular Cell, 2003, 11(2): 437–444.

    Google Scholar 

  8. North B J, Verdin E. Interphase nucleocytoplasmic shuttling and localization of SIRT2 during mitosis [J]. PLoS One, 2007, 2(8): e784.

    Google Scholar 

  9. Verdin E, Hirschey M D, Finley LWS, et al. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling [J]. Trends in Biochemical Sciences, 2010, 35(12): 669–675.

    Google Scholar 

  10. Michishita E, Mccord R A, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin [J]. Nature, 2008, 452(7186): 492–496.

    Google Scholar 

  11. Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription [J]. Genes & Development, 2006, 20(9): 1075–1080.

    Google Scholar 

  12. Onyango P, Celic I, Mccaffery J M, et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13653–13658.

    Google Scholar 

  13. Barber M F, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation [J]. Nature, 2012, 487(7405): 114–118.

    Google Scholar 

  14. Haigis M C, Mostoslavsky R, Haigis K M, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells [J]. Cell, 2006, 126(5): 941–954.

    Google Scholar 

  15. Nakagawa T, Lomb D J, Haigis M C, et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle [J]. Cell, 2009, 137(3): 560–570.

    Google Scholar 

  16. Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase [J]. Science, 2011, 334(6057): 806–809.

    Google Scholar 

  17. Liszt G, Ford E, Kurtev M, et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase [J]. Journal of Biological Chemistry, 2005, 280(22): 21313–21320.

    Google Scholar 

  18. Jiang H, Khan S, Wang Y, et al. SIRT6 regulates TNF-α secretion through hydrolysis of longchain fatty acyl lysine [J]. Nature, 2013, 496(7443): 110–113.

    Google Scholar 

  19. Feldman J L, Baeza J, Denu J M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins [J]. The Journal of Biological Chemistry, 2013, 288(43): 31350–31356.

    Google Scholar 

  20. Guarente L. Calorie restriction and sirtuins revisited [J]. Genes & Development, 2013, 27(19): 2072–2085.

    Google Scholar 

  21. Kaeberlein M, Mcvey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms [J]. Genes & Development, 1999, 13(19): 2570–2580.

    Google Scholar 

  22. Chen D, Guarente L. SIR2: A potential target for calorie restriction mimetics [J]. Trends in Molecular Medicine, 2007, 13(2): 64–71.

    Google Scholar 

  23. Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice [J]. Nature, 2012, 483(7388): 218–221.

    Google Scholar 

  24. Satoh A, Brace C S, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH [J]. Cell Metabolism, 2013, 18(3): 416–430.

    Google Scholar 

  25. Hall J A, Dominy J E, Lee Y, et al. The sirtuin family’s role in aging and age-associated pathologies [J]. Journal of Clinical Investigation, 2013, 123(3): 973–979.

    Google Scholar 

  26. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells [J]. Annual Review Neuroscience, 2009, 32(1): 149–184.

    Google Scholar 

  27. Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the redoxdependent fate of neural progenitors [J]. Nature Cell Biology, 2008, 10(4): 385–394.

    Google Scholar 

  28. Tiberi L, van den Ameele J, Dimidschstein J, et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets [J]. Nature Neuroscience, 2012, 15(12): 1627–1635.

    Google Scholar 

  29. Ross S E, Greenberg M E, Stiles C D. Basic helix-loop-helix factors in cortical development [J]. Neuron, 2003, 39(1): 13–25.

    Google Scholar 

  30. Kageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: Repressors and oscillators that orchestrate embryogenesis [J]. Development, 2007, 134(7): 1243–1251.

    Google Scholar 

  31. Ichi S, Boshnjaku V, Shen Y W, et al. Role of Pax3 acetylation in the regulation of Hes1 and Neurog2 [J]. Molecular Biology of the Cell, 2011, 22(4): 503–512.

    Google Scholar 

  32. Holloway K R, Calhoun T N, Saxena M, et al. SIRT1 regulates dishevelled proteins and promotes transient and constitutive Wnt signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9216–9221.

    Google Scholar 

  33. Liu B, Ghosh S, Yang X, et al. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria [J]. Cell Metabolism, 2012, 16(6): 738–750.

    Google Scholar 

  34. Zhang Y, Wang J, Chen G, et al. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells [J]. Biochemical and Biophysical Research Communications, 2011, 404(2): 610–614.

    Google Scholar 

  35. Rafalski V A, Ho P P, Brett J O, et al. Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain [J]. Nature Cell Biology, 2013, 15(6): 614–624.

    Google Scholar 

  36. Maxwell M M, Tomkinson E M, Nobles J, et al. The sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS [J]. Human Molecular Genetics, 2011, 20(20): 3986–3996.

    Google Scholar 

  37. Werner H B, Kuhlmann K, Shen S, et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin [J]. Journal of Neuroscience, 2007, 27(20): 7717–7730.

    Google Scholar 

  38. Li W, Zhang B, Tang J, et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin [J]. The Journal of Neuroscience, 2007, 27(10): 2606–2616.

    Google Scholar 

  39. Ji S, Doucette J R, Nazarali A J. Sirt2 is a novel in vivo downstream target of Nkx2. 2 and enhances oligodendroglial cell differentiation [J]. Journal of Molecular Cell Biology, 2011, 3(6): 351–359.

    Google Scholar 

  40. Si X, Chen W, Guo X, et al. Activation of GSK3beta by Sirt2 is required for early lineage commitment of mouse embryonic stem cell [J]. PLoS One, 2013, 8(10): e76699.

    Google Scholar 

  41. Beirowski B, Gustin J, Armour S M, et al. Sirtwo-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): E952–961.

    Google Scholar 

  42. Komlos D, Mann K D, Zhuo Y, et al. Glutamate dehydrogenase 1 and SIRT4 regulate glial development [J]. Glia, 2013, 61(3): 394–408.

    Google Scholar 

  43. Guo W, Qian L, Zhang J, et al. Sirt1 overexpression in neurons promotes neurite outgrowth and cell survival through inhibition of the mTOR signaling [J]. Journal of Neuroscience Research, 2011, 89(11): 1723–1736.

    Google Scholar 

  44. Li X H, Chen C, Tu Y, et al. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3 [J]. Molecular Neurobiology, 2013, 48(3): 490–499.

    Google Scholar 

  45. Liu C M, Wang R Y, Saijilafu , et al. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration [J]. Genes & Development, 2013, 27(13): 1473–1483.

    Google Scholar 

  46. Michan S, Li Y, Chou M M H, et al. SIRT1 is essential for normal cognitive function and synaptic plasticity [J]. The Journal of Neuroscience, 2010, 30(29): 9695–9707.

    Google Scholar 

  47. Codocedo J F, Allard C, Godoy J A, et al. SIRT1 regulates dendritic development in hippocampal neurons [J]. PLoS One, 2012, 7(10): e47073.

    Google Scholar 

  48. Coppari R. Metabolic actions of hypothalamic SIRT1 [J]. Trends in Endocrinology and Metabolism, 2012, 23(4): 179–185.

    Google Scholar 

  49. Ramadori G, Lee C E, Bookout A L, et al. Brain SIRT1: Anatomical distribution and regulation by energy availability [J]. The Journal of Neuroscience, 2008, 28(40): 9989–9996.

    Google Scholar 

  50. Ramadori G, Fujikawa T, Fukuda M, et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity [J]. Cell Metabolism, 2010, 12(1): 78–87.

    Google Scholar 

  51. Ramadori G, Fujikawa T, Erson J, et al. SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance [J]. Cell Metabolism, 2011, 14(3): 301–312.

    Google Scholar 

  52. Hong S H, Lee K S, Kwak S J, et al. Minibrain/dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in drosophila and mammals [J]. PLoS Genetics, 2012, 8(8): e1002857.

    Google Scholar 

  53. Cakir I, Perello M, Lansari O, et al. Hypothalamic Sirt1 regulates food intake in a rodent model system [J]. PLoS One, 2009, 4(12): e8322.

    Google Scholar 

  54. Veláquez D A, Martinez G, Romero A, et al. The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin [J]. Diabetes, 2011, 60(4): 1177–1185.

    Google Scholar 

  55. Dietrich M O, Antunes C, Geliang G, et al. Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity [J]. The Journal of Neuroscience, 2010, 30(35): 11815–11825.

    Google Scholar 

  56. Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation [J]. Cell, 2008, 134(2): 317–328.

    Google Scholar 

  57. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control [J]. Cell, 2008, 134(2): 329–340.

    Google Scholar 

  58. Chang H C, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging [J]. Cell, 2013, 153(7): 1448–1460.

    Google Scholar 

  59. Panossian L, Fenik P, Zhu Y, et al. SIRT1 regulation of wakefulness and senescence-like phenotype in wake neurons [J]. The Journal of Neuroscience, 2011, 31(11): 4025–4036.

    Google Scholar 

  60. Peek C B, Affinati A H, Ramsey KM, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice [J]. Science, 2013, 342(6158):1243417.

    Google Scholar 

  61. Monteserin-Garcia J, Al-Massadi O, Seoane L M, et al. Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis [J]. FASEB Journal, 2013, 27(4): 1561–1571.

    Google Scholar 

  62. Schwer B, Schumacher B, Lombard D B, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21790–21794.

    Google Scholar 

  63. Ferguson D, Koo J W, Feng J, et al. Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action [J]. The Journal of Neuroscience, 2013, 33(41): 16088–16098.

    Google Scholar 

  64. Libert S, Pointer K, Bell E L, et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive [J]. Cell, 2011, 147(7): 1459–1472.

    Google Scholar 

  65. Gao J, Wang W Y, Mao Y W, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134 [J]. Nature, 2010, 466(7310): 1105–1109.

    Google Scholar 

  66. Zhao Y N, Li W F, Li F, et al. Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway [J]. Biochemical and Biophysical Research Communications, 2013, 435(4): 597–602.

    Google Scholar 

  67. Qiu X, Brown K, Hirschey M D, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation [J]. Cell Metabolism, 2010, 12(6): 662–667.

    Google Scholar 

  68. Lin Z F, Xu H B, Wang J Y, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS [J]. Biochemical and Biophysical Research Communications, 2013, 441(1): 191–195.

    Google Scholar 

  69. Hsu C P, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion [J]. Circulation, 2010, 122(21): 2170–2182.

    Google Scholar 

  70. Nadtochiy S M, Yao H, Mcburney M W, et al. SIRT1-mediated acute cardioprotection [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2011, 301(4): H1506–H1512.

    Google Scholar 

  71. Sundaresan N R, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice [J]. The Journal of Clinical Investigation, 2009, 119(9): 2758–2771.

    Google Scholar 

  72. Sundaresan N R, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun [J]. Nature Medicine, 2012, 18(11): 1643–1650.

    Google Scholar 

  73. Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice [J]. Circulation Research, 2008, 102(6): 703–710.

    Google Scholar 

  74. Narayan N, Lee I H, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis [J]. Nature, 2012, 492(7428): 199–204.

    Google Scholar 

  75. Newton K, Hildebrand J M, Shen Z, et al. Is SIRT2 required for necroptosis? [J]. Nature, 2014, 506(7489): E4–E6.

    Google Scholar 

  76. Narayan N, Lee I H, Borenstein R, et al. Retraction: The NAD-dependent deacetylase SIRT2 is required for programmed necrosis [J]. Nature, 2014, 506(7489): 516.

    Google Scholar 

  77. Morris K C, Lin H W, Thompson J W, et al. Pathways for ischemic cytoprotection: Role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning [J]. Journal of Cerebral Blood Flow & Metabolism, 2011, 31(4): 1003–1019.

    Google Scholar 

  78. Della-Morte D, Dave K R, Defazio R A, et al. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway [J]. Neuroscience, 2009, 159(3): 993–1002.

    Google Scholar 

  79. Clark D, Tuor U I, Thompson R, et al. Protection against recurrent stroke with resveratrol:Endothelial protection [J]. PLoS One, 2012, 7(10): e47792.

    Google Scholar 

  80. Wang L, Zhang L, Chen Z B, et al. Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1 [J]. European Journal of Pharmacology, 2009, 609(1–3): 40–44.

    Google Scholar 

  81. Zhu H R, Wang Z Y, Zhu X L, et al. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α expression in experimental stroke [J]. Neuropharmacology, 2010, 59(1–2): 70–76.

    Google Scholar 

  82. Raval A P, Dave K R, Péez-Pinzón M A. Resveratrol mimics ischemic preconditioning in the brain [J]. Journal of Cerebral Blood Flow & Metabolism, 2006, 26(9): 1141–1147.

    Google Scholar 

  83. Yan W, Fang Z, Yang Q, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain [J]. Journal of Cerebral Blood Flow & Metabolism, 2013, 33(3): 396–406.

    Google Scholar 

  84. Wang P, Xu T Y, Guan Y F, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway [J]. Annals of Neurology, 2011, 69(2): 360–374.

    Google Scholar 

  85. Wang P, Guan Y F, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia [J]. Autophagy, 2012, 8(1): 77–87.

    Google Scholar 

  86. Hernández-Jiménez M, Hurtado O, Cuartero M I, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage [J]. Stroke, 2013, 44(8): 2333–2337.

    Google Scholar 

  87. Lee O H, Kim J, Kim J M, et al. Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia [J]. Biochemical and Biophysical Research Communications, 2013, 438(2): 388–394.

    Google Scholar 

  88. Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction [J]. The Journal of Biological Chemistry, 2006, 281(31): 21745–21754.

    Google Scholar 

  89. Kim D, Nguyen M D, Dobbin M M, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis [J]. The EMBO Journal, 2007, 26(13): 3169–3179.

    Google Scholar 

  90. Green K N, Steffan J S, Martinez-Coria H, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau [J]. The Journal of Neuroscience, 2008, 28(45): 11500–11510.

    Google Scholar 

  91. Donmez G, Wang D, Cohen D E, et al. SIRT1 suppresses beta-amyloid production by activating the α-secretase gene ADAM10 [J]. Cell, 2010, 142(2): 320–332.

    Google Scholar 

  92. Wang R, Li J J, Diao S, et al. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARΓ-PGC-1 in neurons [J]. Cell Metabolism, 2013, 17(5): 685–694.

    Google Scholar 

  93. Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling [J]. The Journal of Biological Chemistry, 2005, 280(48): 40364–40374.

    Google Scholar 

  94. Min S W, Cho S H, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy [J]. Neuron, 2010, 67(6): 953–966.

    Google Scholar 

  95. Kumar R, Chaterjee P, Sharma P K, et al. Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease [J]. PLoS One, 2013, 8(4): e61560.

    Google Scholar 

  96. Porcelli S, Salfi R, Politis A, et al. Association between sirtuin2 gene rs10410544 polymorphism and depression in Alzheimer’s disease in two independent European samples [J]. Journal of Neural Transmission, 2013, 120(12): 1709–1715.

    Google Scholar 

  97. Wei W, Xu X, Li H, et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease: A meta-analysis [J]. Neuromolecular Medicine, 2014. DOI 10.1007/s12017-014-8291-0 (published online).

    Google Scholar 

  98. Xia M, Yu J T, Miao D, et al. SIRT2 polymorphism rs10410544 is associated with Alzheimer’s disease in a Han Chinese population [J]. Journal of Neurological Sciences, 2014, 336(1–2): 48–51.

    Google Scholar 

  99. Polito L, Kehoe P G, Davin A, et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case-control cohorts [J]. Alzheimers & Dementia, 2013, 9(4): 392–399.

    Google Scholar 

  100. Rothgiesser K M, Erener S, Waibel S, et al. SIRT2 regulates NF-κB-dependent gene expression through deacetylation of p65 Lys310 [J]. Journal of Cell Science, 2010, 123(24): 4251–4258.

    Google Scholar 

  101. Pais T F, Szego E M, Marques O, et al. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation [J]. The EMBO Journal, 2013, 32(19): 2603–2616.

    Google Scholar 

  102. Weir H J M, Murray T K, Kehoe P G, et al. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease [J]. PLoS One, 2012, 7(11): e48225.

    Google Scholar 

  103. Albani D, Polito L, Batelli S, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by α-synuclein or amyloid-β (1–42) peptide [J]. Journal of Neurochemistry, 2009, 110(5): 1445–1456.

    Google Scholar 

  104. Wu Y, Li X, Zhu J X, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease [J]. Neurosignals, 2011, 19(3): 163–174.

    MathSciNet  Google Scholar 

  105. Blanchet J, Longpre F, Bureau G, et al. Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice [J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2008, 32(5): 1243–1250.

    Google Scholar 

  106. Donmez G, Arun A, Chung C Y, et al. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones [J]. The Journal of Neuroscience, 2012, 32(1): 124–132.

    Google Scholar 

  107. Outeiro T F, Kontopoulos E, Altmann S M, et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease [J]. Science, 2007, 317(5837): 516–519.

    Google Scholar 

  108. Sampaio-Marques B, Felgueiras C, Silva A, et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy [J]. Autophagy, 2012, 8(10): 1494–1509.

    Google Scholar 

  109. Liu L, Arun A, Ellis L, et al. Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein [J]. The Journal of Biological Chemistry, 2012, 287(39): 32307–32311.

    Google Scholar 

  110. Liu L, Arun A, Ellis L, et al. Additons and corrections: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein [J]. The Journal of Biological Chemistry, 2013, 288(33): 24163.

    Google Scholar 

  111. Glorioso C, Oh S, Douillard G G, et al. Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism [J]. Neurobiology of Disease, 2011, 41(2): 279–290.

    Google Scholar 

  112. Pallos J, Bodai L, Lukacsovich T, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a drosophila model of Huntington’s disease [J]. Human Molecular Genetics, 2008, 17(33): 3767–3775.

    Google Scholar 

  113. Parker J A, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons [J]. Nature Genetics, 2005, 37(4): 349–350.

    Google Scholar 

  114. Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets [J]. Nature Medicine, 2012, 18(1): 153–158.

    Google Scholar 

  115. Jeong H, Cohen D E, Cui L, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway [J]. Nature Medicine, 2012, 18(1): 159–165.

    Google Scholar 

  116. Luthi-Carter R, Taylor D M, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 7927–7932.

    Google Scholar 

  117. Chopra V, Quinti L, Kim J, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models [J]. Cell Reports, 2012, 2(6): 1492–1497.

    Google Scholar 

  118. Bobrowska A, Donmez G, Weiss A, et al. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington’s disease phenotypes in vivo [J]. PLoS One, 2012, 7(4): e34805.

    Google Scholar 

  119. Fu J, Jin J, Cichewicz R H, et al. Trans-(-)-epsilonviniferin increases mitochondrial sirtuin3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease [J]. The Journal of Biological Chemistry, 2012, 287(29): 24460–24472.

    Google Scholar 

  120. Dobbin M M, Madabhushi R, Pan L, et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons [J]. Nature Neuroscience, 2013, 16(8): 1008–1015.

    Google Scholar 

  121. Li Y, Xu W, Mcburney M W, et al. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons [J]. Cell Metabolism, 2008, 8(1): 38–48.

    Google Scholar 

  122. Kim S H, Lu H F, Alano C C. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture [J]. PLoS One, 2011, 6(3): e14731.

    Google Scholar 

  123. Someya S, Yu W, Hallows W C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction [J]. Cell, 2010, 143(5): 802–812.

    Google Scholar 

  124. Wang J, Zhang Y, Tang L, et al. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis [J]. Neuroscience Letters, 2011, 503(3): 250–255.

    Google Scholar 

  125. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J]. Science, 2004, 305(5686): 1010–1013.

    Google Scholar 

  126. Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: A crucial role of tubulin deacetylation [J]. Neuroscience, 2007, 147(3): 599–612.

    Google Scholar 

  127. Nimmagadda V K, Bever C T, Vattikunta N R, et al. Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets [J]. The Journal of Immunology, 2013, 190(9): 4595–4607.

    Google Scholar 

  128. Bizat N, Peyrin J M, Haik S, et al. Neuron dysfunction is induced by prion protein with an insertional mutation via a Fyn kinase and reversed by sirtuin activation in caenorhabditis elegans [J]. The Journal of Neuroscience, 2010, 30(15): 5394–5403.

    Google Scholar 

  129. Seo J S, Moon M H, Jeong J K, et al. SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death [J]. Neurobiology of Aging, 2012, 33(6): 1110–1120.

    Google Scholar 

  130. Jeong J K, Moon M H, Lee Y J, et al. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity [J]. Neurobiology of Aging, 2013, 34(1): 146–156.

    Google Scholar 

  131. Bodkin N L, Alexander T M, Ortmeyer H K, et al. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction [J]. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 2003, 58(3): 212–219.

    Google Scholar 

  132. Mattison J A, Roth G S, Beasley T M, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study [J]. Nature, 2012, 489(7415): 318–321.

    Google Scholar 

  133. Kim H S, Xiao C, Wang R H, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis [J]. Cell Metabolism, 2010, 12(3): 224–236.

    Google Scholar 

  134. Shao J, Liu T, Xie Q R, et al. Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation [J]. Journal of Neuroimmunology, 2013, 254(1–2): 83–90.

    Google Scholar 

  135. Mouchiroud L, Houtkooper R H, Moullan N, et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling [J]. Cell, 2013, 154(2): 430–441.

    Google Scholar 

  136. Gomes A P, Price N L, Ling A J Y, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging [J]. Cell, 2013, 155(7): 1624–1638.

    Google Scholar 

  137. Yoshino J, Mills K F, Yoon M J, et al. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice [J]. Cell Metabolism, 2011, 14(4): 528–536.

    Google Scholar 

  138. Canto C, Houtkooper R H, Pirinen E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat dietinduced obesity [J]. Cell Metabolism, 2012, 15(6): 838–847.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-liang Xia  (夏伟梁).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 31270032), the Shanghai Jiao Tong University Interdisciplinary Research Grant (No. YG2012ZD05) and the Grant from Ministry of Science and Technology of China (No. 2013CB945604)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Jx., Zhang, Tt., Liu, Ty. et al. Sirtuin functions in the brain: From physiological to pathological aspects. J. Shanghai Jiaotong Univ. (Sci.) 19, 651–662 (2014). https://doi.org/10.1007/s12204-014-1562-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-014-1562-y

Key words

CLC number

Navigation