Skip to main content
Log in

Review on one-dimensional ZnO nanostructures for electron field emitters

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

The emission of electrons from the surface of a solid caused by a high electric field is called field emission (FE). Electron sources based on FE are used today in a wide range of applications, such as microwave traveling wave tubes, e-beam evaporators, mass spectrometers, flat panel of field emission displays (FEDs), and highly efficient lamps. Since the discovery of carbon nanotubes (CNTs) in 1991, much attention has been paid to explore the usage of these ideal one-dimensional (1D) nanomaterials as field emitters achieving high FE current density at a low electric field because of their high aspect ratio and “whisker-like” shape for optimum geometrical field enhancement. 1D metal oxide semiconductors, such as ZnO and WO3 possess high melting point and chemical stability, thereby allowing a higher oxygen partial pressure and poorer vacuum in FE applications. In addition, unlike CNTs, in which both semiconductor and metallic CNTs can co-exist in the as-synthesized products, it is possible to prepare 1D semiconductor nanostructures with a unique electronic property. Moreover, 1D semiconductor nanostructures generally have the advantage of a lower surface potential barrier than that of CNTs due to lower electron affinity and the conductivity could be enhanced by doping with certain elements. As a consequence, there has been increasing interest in the investigation of 1D metal oxide nanostructure as an appropriate alternative FE electron source to CNT for FE devices in the past few years. This paper provides a comprehensive review of the state-of-the-art research activities in the field. It mainly focuses on FE properties and applications of the most widely studied 1D ZnO nanostructures, such as nanowires (NWs), nanobelts, nanoneedles and nanotubes (NTs). We begin with the growth mechanism, and then systematically discuss the recent progresses on several kinds of important nanostructures and their FE characteristics and applications in details. Finally, it is concluded with the outlook and future research tendency in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Kim B J, Park Y S, Youn C J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-1–241108-3

    Google Scholar 

  2. Könenkamp R, Word R C, Godinez M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Letters, 2005, 5(10): 2005–2008

    Google Scholar 

  3. Lim J H, Kang C K, Kim K K, Park I K, Hwang D K, Park S J. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials, 2006, 18(20): 2720–2724

    Google Scholar 

  4. Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z, Fan X W. Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes. Journal of Physical Chemistry C, 2009, 113(7): 2980–2982

    Google Scholar 

  5. Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Applied Physics Letters, 2007, 90(13): 131115-1–131115-3

    Google Scholar 

  6. Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Zhao D X, Shen D Z, Fan X W, Lu Y M, Tang Z K. Ultralow-threshold laser realized in zinc oxide. Advanced Materials, 2009, 21(16): 1613–1617

    Google Scholar 

  7. Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters, 1998, 72(25): 3270–3272

    Google Scholar 

  8. Chu S, Olmedo M, Yang Z, Kong J, Liu J L. Electrically pumped ultraviolet ZnO diode lasers on Si. Applied Physics Letters, 2008, 93(18): 181106-1–181106-3

    Google Scholar 

  9. Liu KW, Shen D Z, Shan C X, Zhang J Y, Yao B, Zhao D X, Lu Y M, Fan X W. Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. Applied Physics Letters, 2007, 91(20): 201106-1–201106-3

    Google Scholar 

  10. Liao L, Lu H B, Shuai M, Li J C, Liu Y L, Liu C, Shen Z X, Yu T. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology, 2008, 19(17): 175501–175505

    Google Scholar 

  11. Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters, 2004, 4(10): 1919–1924

    Google Scholar 

  12. Huang H, Tan O K, Lee Y C, Tran T D, Tse M S, Yao X. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Applied Physics Letters, 2005, 87(16): 163123-1–163123-3

    Google Scholar 

  13. Park J Y, Song D E, Kim S S. An approach to fabricating chemical sensors based on ZnO nanorod arrays. Nanotechnology, 2008, 19(10): 105503–105507

    Google Scholar 

  14. Chang S J, Hsueh T J, Chen I C, Huang B R. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 2008, 19(17): 175502–175506

    Google Scholar 

  15. Niu S, Hu Y, Wen X, Zhou Y, Zhang F, Lin L, Wang S, Wang Z L, Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Advanced Materials, 2013, 25(27): 3701–3706

    Google Scholar 

  16. Law J B K, Thong J T L. Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration. Nanotechnology, 2008, 19(20): 205502–205506

    Google Scholar 

  17. Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature, 2005, 4(6): 455–459

    Google Scholar 

  18. Seow Z L S, Wong A S W, Thavasi V, Jose R, Ramakrishna S, Ho G W. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology, 2009, 20(4): 045604–045609

    Google Scholar 

  19. Jiang C Y, Sun XW, Tan KW, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92(14): 143101-1–143101-3

    Google Scholar 

  20. Hsu Y F, Xi Y Y, Djurišić A B, Chan W K. ZnO nanorods for solar cells: hydrothermal growth versus vapor deposition. Applied Physics Letters, 2008, 92(13): 133507-1–133507-3

    Google Scholar 

  21. Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M. Repeated temperature modulation epitaxy for ptype doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42–46

    Google Scholar 

  22. Xu WZ, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu J G, He H P, Zhang S B. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters, 2006, 88(17): 173506-1–173506-3

    Google Scholar 

  23. Bian J M, Liu W F, Liang H W, Hu L Z, Sun J C, Luo Y M, Du G T. Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis. Chemical Physics Letters, 2006, 430(1–3): 183–187

    Google Scholar 

  24. Zhang J Y, Li P J, Sun H, Shen X, Deng T S, Zhu K T, Zhang Q F, Wu J L. Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions. Applied Physics Letters, 2008, 93(2): 021116-1–021116-3

    Google Scholar 

  25. Hsu Y F, Xi Y Y, Tam K H, Djurišić A B, Luo J M, Ling C C, Cheung C K, Ng A M C, Chan W K, Deng X, Beling C D, Fung S, Cheah K W, Fong P W K, Surya C C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Advanced Functional Materials, 2008, 18(7): 1020–1030

    Google Scholar 

  26. Goldberger J, He R, Zhang Y F, Lee S K, Yan H Q, Choi H J, Yang P D. Single-crystal gallium nitride nanotubes. Nature, 2003, 422(6932): 599–602

    Google Scholar 

  27. Wang X D, Gao P X, Li J, Summers C J, Wang Z L. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Advanced Materials, 2002, 14(23): 1732–1735

    Google Scholar 

  28. Shoulders K R. Microelectronics using electron-beam-activated machining techniques. Advances in Computers, 1961, 2: 135–293

    Google Scholar 

  29. Spindt C A. A thin-film field-emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505

    Google Scholar 

  30. Spindt C A, Brodie I, Humphrey L, Westerberg E R. Physical properties of thin-film field emission cathodes with molybdenum cones. Journal of Applied Physics, 1976, 47(12): 5248–5263

    Google Scholar 

  31. Spindt C A, Shoulders K R, Heynick L N. US Patents, 3755704, 1973

  32. Xu N S, Huq S E. Novel cold cathode materials and applications. Materials Science and Engineering: R: Reports, 2005, 48(2–5): 47–189

    Google Scholar 

  33. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Google Scholar 

  34. Xu N S, Deng S Z, Chen J. Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy, 2003, 95(1–4): 19–28

    Google Scholar 

  35. Fan S S, Chapline M G, Franklin N R, Tombler TW, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401): 512–514

    Google Scholar 

  36. Heer W A D, Châtelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 1995, 270(5239): 1179–1180

    Google Scholar 

  37. Rinzler A G, Hafner J H, Nikolaev P, Nordlander P, Colbert D T, Smalley R E, Lou L, Kim S G, Tománek D. Unraveling nanotubes: field emission from an atomic wire. Science, 1995, 269(5230): 1550–1553

    Google Scholar 

  38. Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon, 2000, 38(2): 169–182

    Google Scholar 

  39. Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics, 1998, 37(Part 2, No. 3B): L346–L348

    Google Scholar 

  40. Pradhan D, Kumar M, Ando Y, Leung K T. One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. Journal of Physical Chemistry C, 2008, 112(18): 7093–7096

    Google Scholar 

  41. Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J, Yang P D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie International Edition, 2003, 42(26): 3031–3034

    Google Scholar 

  42. Kumar R T R, McGlynn E, Biswas M, Saunders R, Trolliard G, Soulestin B, Duclere J R, Mosnier J P, Henry M O. Growth of ZnO nanostructures on Au-coated Si: influence of growth temperature on growth mechanism and morphology. Journal of Applied Physics, 2008, 104(8): 084309–084319

    Google Scholar 

  43. Kim D S, Scholz R, Gösele U, Zacharias M. Gold at the root or at the tip of ZnO nanowires: a model. Small, 2008, 4(10): 1615–1619

    Google Scholar 

  44. Chiu S P, Lin Y H, Lin J J. Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology, 2009, 20(1): 015203–015210

    MathSciNet  Google Scholar 

  45. Hochbaum A I, Fan R, He R G, Yang P D. Controlled growth of Si nanowire arrays for device integration. Nano Letters, 2005, 5(3): 457–460

    Google Scholar 

  46. Zhou H J, Fallert J, Sartor J, Dietz R J B, Klingshirn C, Kalt H, Weissenberger D, Gerthsen D, Zeng H B, Cai W P. Ordered n-type ZnO nanorod arrays. Applied Physics Letters, 2008, 92(13): 132112-1–132112-3

    Google Scholar 

  47. Pan ZW, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

    Google Scholar 

  48. Gao P X, Wang Z L. Self-assembled nanowire-nanoribbon junction arrays of ZnO. Journal of Physical Chemistry B, 2002, 106(49): 12653–12658

    Google Scholar 

  49. Li S Y, Lin P, Lee C Y, Tseng T Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. Journal of Applied Physics, 2004, 95(7): 3711–3716

    Google Scholar 

  50. Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P. Growth habits and defects in ZnO nanowires grown on GaN/sapphire substrates. Applied Physics Letters, 2005, 87(10): 103110-1–103110-3

    Google Scholar 

  51. Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gösele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small, 2007, 3(1): 76–80

    Google Scholar 

  52. Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Letters, 2003, 3(9): 1315–1320

    Google Scholar 

  53. Wang X D, Song J H, Summers C J, Ryou J H, Li P, Dupuis R D, Wang Z L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. Journal of Physical Chemistry B, 2006, 110(15): 7720–7724

    Google Scholar 

  54. Wang X D, Zhou J, Lao C S, Song J H, Xu N S, Wang Z L. In situ field emission of density-controlled ZnO nanowire arrays. Advanced Materials, 2007, 19(12): 1627–1631

    Google Scholar 

  55. Shen G Z, Bando Y, Liu B D, Golberg D, Lee C J. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process. Advanced Functional Materials, 2006, 16(3): 410–416

    Google Scholar 

  56. Fang F, Zhao D X, Shen D Z, Zhang J Y, Li B H. Synthesis of ordered ultrathin ZnO nanowire bundles on an indium-tin oxide substrate. Inorganic Chemistry, 2008, 47(2): 398–400

    MATH  Google Scholar 

  57. Liao X, Zhang X, Li S. The effect of residual stresses in the ZnO buffer layer on the density of a ZnO nanowire array. Nanotechnology, 2008, 19(22): 225313-1–225313-7

    Google Scholar 

  58. Hong J I, Bae, Wang Z L, Snyder R L. Room-temperature, texturecontrolled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology, 2009, 20(8): 085609-1–085609-5

    Google Scholar 

  59. Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13(10): 811–814

    Google Scholar 

  60. Zhu YW, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 2003, 83(1): 144–146

    Google Scholar 

  61. Zhang Z X, Yuan H J, Zhou J J, Liu D F, Luo S D, Miao Y M, Gao Y, Wang J X, Liu L F, Song L, Xiang Y J, Zhao X W, Zhou W Y, Xie S S. Growth mechanism, photoluminescence, and fieldemission properties of ZnO nanoneedle arrays. Journal of Physical Chemistry B, 2006, 110(17): 8566–8569

    Google Scholar 

  62. Xu C X, Sun X W. Field emission from zinc oxide nanopins. Applied Physics Letters, 2003, 83(18): 3806–3808

    Google Scholar 

  63. Liao L, Li J C, Liu D H, Liu C, Wang D F, Song W Z, Fu Q. Selfassembly of aligned ZnO nanoscrews: growth, configuration, and field emission. Applied Physics Letters, 2005, 86(8): 083106-1–083106-3

    Google Scholar 

  64. Wang R C, Liu C P, Huang J L, Chen S J. Growth and fieldemission properties of single-crystalline conic ZnO nanotubes. Nanotechnology, 2006, 17(3): 753–757

    Google Scholar 

  65. Xu WZ, Ye Z Z, Ma DW, Lu H M, Zhu L P, Zhao B H, Yang X D, Xu Z Y. Quasi-aligned ZnO nanotubes grown on Si substrates. Applied Physics Letters, 2005, 87(9): 093110-1–093110-3

    Google Scholar 

  66. Wang W Z, Zeng B Q, Yang J, Poudel B, Huang J Y, Naughton M J, Ren Z F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials, 2006, 18(24): 3275–3278

    Google Scholar 

  67. He H P, Tang H P, Ye Z Z, Zhu L P, Zhao B H, Wang L, Li X H. Temperature-dependent photoluminescence of quasialigned Aldoped ZnO nanorods. Applied Physics Letters, 2007, 90(2): 023104-1–023104-3

    Google Scholar 

  68. Lin S S, He H P, Ye Z Z, Zhao B H, Huang J Y. Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods. Journal of Applied Physics, 2008, 104(11): 114307-1–114307-7

    Google Scholar 

  69. He H P, Ye Z Z, Lin S S, Tang H P, Zhang Y Z, Zhu L P, Huang J Y, Zhao B H. Determination of the free exciton energy in ZnO nanorods from photoluminescence excitation spectroscopy. Journal of Applied Physics, 2007, 102(1): 013511-1–013511-4

    Google Scholar 

  70. Lin S S, Tang H P, Ye Z Z, He H P, Zeng Y J, Zhao B H, Zhu L P. Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration. Materials Letters, 2008, 62(4): 603–606

    Google Scholar 

  71. Zhu L P, Li J S, Ye Z Z, He H P, Chen X J, Zhao B H. Photoluminescence of Ga-doped ZnO nanorods prepared by chemical vapor deposition. Optical Materials, 2008, 31(2): 237–240

    Google Scholar 

  72. Ahn C H, Han W S, Kong B H, Cho H K. Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior. Nanotechnology, 2009, 20(1): 015601-1–015601-7

    Google Scholar 

  73. Yuan G D, Zhang W J, Jie J S, Fan X, Tang J X, Shafiq I, Ye Z Z, Lee C S, Lee S T. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Advanced Materials, 2008, 20(1): 168–173

    Google Scholar 

  74. Xiang B, Wang PW, Zhang X Z, Dayeh S A, Aplin D P R, Soci C, Yu D P, Wang D L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters, 2007, 7(2): 323–328

    Google Scholar 

  75. Yuan G D, Zhang W J, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S, Lee S T. p-type ZnO nanowire arrays. Nano Letters, 2008, 8(8): 2591–2597

    Google Scholar 

  76. Lu J G, Zhang Y Z, Ye Z Z, Zeng Y J, Huang J Y, Wang L. Rational synthesis and tunable optical properties of quasialigned Zn1 − xMgxO nanorods. Applied Physics Letters, 2007, 91(19): 193108-1–193108-3

    Google Scholar 

  77. Zhi M, Zhu L, Ye Z, Wang F, Zhao B, Preparation and properties of ternary ZnMgO nanowires. The Journal of Physical Chemistry B, 2005, 109(50): 23930–23934

    Google Scholar 

  78. Wang F Z, Ye Z Z, Ma D W, Zhu L P, Zhuge F, He H P. Synthesis and characterization of quasi-aligned ZnCdO nanorods. Applied Physics Letters, 2005, 87(14): 143101-1–143101-3

    Google Scholar 

  79. Liao L, Lu H B, Zhang L, Shuai M, Li J C, Liu C, Fu D J, Ren F. Effect of ferromagnetic properties in Al-doped Zn1−xCoxO nanowires synthesized by water-assistance reactive vapor deposition. Journal of Applied Physics, 2007, 102(11): 114307-1–114307-5

    Google Scholar 

  80. Zhang X M, Zhang Y, Wang Z L, Mai W J, Gu Y D, Chu W S, Wu Z Y. Synthesis and characterization of Zn1 − xMnxO nanowires. Applied Physics Letters, 2008, 92(16): 162102-1–162102-3

    Google Scholar 

  81. Zhang X M, Mai W, Zhang Y, Ding Y, Wang Z L. Co-doped Yshape ZnO nanostructures: synthesis, structure and properties. Solid State Communications, 2009, 149(7–8): 293–296

    Google Scholar 

  82. He J H, Lao C S, Chen L J, Davidovic D, Wang Z L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. Journal of the American Chemical Society, 2005, 127(47): 16376–16377

    Google Scholar 

  83. Xing G Z, Yi J B, Tao J G, Liu T, Wong L M, Zhang Z, Li G P, Wang S J, Ding J, Sum T C, Huan C H A, Wu T. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Advanced Materials, 2008, 20(18): 3521–3527

    Google Scholar 

  84. Zha M Z, Calestani D, Zappettini A, Mosca R, Mazzera M, Lazzarini L, Zanotti L. Large-area self-catalyzed and selective growth of ZnO nanowires. Nanotechnology, 2008, 19(32): 325603-1–325603-6

    Google Scholar 

  85. Huo K F, Hu Y M, Fu J J, Wang X B, Chu P K, Hu Z, Chen Y. Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate. Journal of Physical Chemistry C, 2007, 111(16): 5876–5881

    Google Scholar 

  86. Gu X G, Huo K F, Qian G X, Fu J J, Chu P K. Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate. Applied Physics Letters, 2008, 93(20): 203117-1–203117-3

    Google Scholar 

  87. Morber J R, Ding Y, Haluska M S, Li Y, Liu J P, Wang Z L, Snyder R L. PLD-Assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. Journal of Physical Chemistry B, 2006, 110(43): 21672–21679

    Google Scholar 

  88. Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z, Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877–3882

    Google Scholar 

  89. Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B, 2001, 105(17): 3350–3352

    Google Scholar 

  90. Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003, 15(5): 464–466

    Google Scholar 

  91. Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5(7): 1231–1236

    Google Scholar 

  92. Greene L E, Yuhas B D, Law M, Zitoun D, Yang P D. Solutiongrown zinc oxide nanowires. Inorganic Chemistry, 2006, 45(19): 7535–7543

    Google Scholar 

  93. Choy J H, Jang E S, Won J H, Chung J H, Jang D J, King YW. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911–1914

    Google Scholar 

  94. Govender K, Boyle D S, O’Brien P, Binks D, West D, Coleman D. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Advanced Materials, 2002, 14(17): 1221–1224

    Google Scholar 

  95. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H J. Controlled growth of ZnO nanowires and their optical properties. Advanced Materials, 2002, 12(5): 323–331

    Google Scholar 

  96. Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 2003, 125: 4403–4431

    Google Scholar 

  97. Sun Y, Riley D J, Ashfold M N R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. Journal of Physical Chemistry B, 2006, 110(31): 15186–15192

    Google Scholar 

  98. Sun Y, Fuge G M, Fox N A, Riley D J, Ashfold M N R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO Film. Advanced Materials, 2005, 17(20): 2477–2481

    Google Scholar 

  99. Sun Y, Ndifor-Angwafora N G, Rileya D J, Ashfold M N R. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters, 2006, 431(4–6): 352–357

    Google Scholar 

  100. She G W, Zhang X H, Shi W S, Fan X, Chang J C, Lee C S, Lee S T, Liu C H. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Applied Physics Letters, 2008, 92(5): 053111-1–053111-3

    Google Scholar 

  101. Liu J P, Xu C X, Zhu G P, Li X, Cui Y P, Yang Y, Sun X W. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission. Journal of Physics D, Applied Physics, 2007, 40(7): 1906–1909

    Google Scholar 

  102. Wang Y X, Li X Y, Lu G, Quan X, Chen G H. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. Journal of Physical Chemistry C, 2008, 112(19): 7332–7336

    Google Scholar 

  103. Lu C H, Qi L M, Yang J H, Tang L, Zhang D Y, Ma J M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications (Cambridge), 2006, (33): 3551–3553

    Google Scholar 

  104. Yang H Q, Song Y Z, Li L, Ma J H, Chen D C, Mai S L, Zhao H. Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3·H2O hydrothermal system. Crystal Growth & Design, 2008, 8(3): 1039–1043

    Google Scholar 

  105. Dev A, Kar S, Chakrabarti S, Chaudhuri S. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006, 17(5): 1533–1540

    Google Scholar 

  106. Yin M, Wu C K, Lou Y B, Burda C, Koberstein J T, Zhu Y, O’Brien S. Copper oxide nanocrystals. Journal of the American Chemical Society, 2005, 127(26): 9506–9511

    Google Scholar 

  107. Yahus B D, Yang P D. Nanowire-based all-oxide solar cells. Journal of the American Chemical Society, 2009, 131(10): 3756–3761

    Google Scholar 

  108. Yin M, O’Brien S. Synthesis of monodisperse nanocrystals of manganese oxides. Journal of the American Chemical Society, 2003, 125(34): 10180–10181

    Google Scholar 

  109. Yin M, Gu Y, Kuskovsky I L, Andelman T, Zhu Y, Neumark G F, O’Brien S. Zinc oxide quantum rods. Journal of the American Chemical Society, 2004, 126(20): 6206–6207

    Google Scholar 

  110. Yuhas B D, Zitoun D O, Pauzauskie P J, He R, Yang P D. Transition-metal doped zinc oxide nanowires. Angewandte Chemie International Edition, 2006, 45(3): 420–423

    Google Scholar 

  111. Liang W J, Yuhas B D, Yang P D. Magnetotransport in Co-doped ZnO nanowires. Nano Letters, 2009, 9(2): 892–896

    Google Scholar 

  112. Wu H, Pan W. Preparation of zinc oxide nanofibers by electrospinning. Journal of the American Ceramic Society, 2006, 89(2): 699–701

    Google Scholar 

  113. Pradhan D, Leung K T. Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. Journal of Physical Chemistry C, 2008, 112(5): 1357–1364

    Google Scholar 

  114. Inamdar A I, Mujawar S H, Ganesan V, Patil P S. Surfactantmediated growth of nanostructured zinc oxide thin films via electrodeposition and their photoelectrochemical performance. Nanotechnology, 2008, 19(32): 325706-1–325706-7

    Google Scholar 

  115. Rakhshani A E. Optical and electrical characterization of wellaligned ZnO rods electrodeposited on stainless steel foil. Applied Physics A, Materials Science & Processing, 2008, 92(2): 303–308

    Google Scholar 

  116. Chen J, Aé L, Aichele C, Lux-Steiner M C. High internal quantum efficiency ZnO nanorods prepared at low temperature. Applied Physics Letters, 2008, 92(16): 161906-1–161906-3

    Google Scholar 

  117. Elias J, Tena-Zaera R, Wang G Y, Lévy-Clément C. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chemistry of Materials, 2008, 20(21): 6633–6637

    Google Scholar 

  118. Xu L F, Liao Q, Zhang J P, Ai X C, Xu D S. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods. Journal of Physical Chemistry C, 2007, 111(12): 4539–4552

    Google Scholar 

  119. Siddheswaran R, Sankar R, Babu M R, Rathnakumari M, Jayavel R, Murugakoothan P, Sureshkumar P. Preparation and characterization of ZnO nanofibers by electrospinning. Crystal Research and Technology, 2006, 41(5): 446–449

    Google Scholar 

  120. Liu H Q, Yang J X, Liang J H, Huang Y X, Tang C Y. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society, 2008, 91(4): 1287–1291

    Google Scholar 

  121. Wu H, Lin D D, Zhang R, Pan W. ZnO nanofiber field-effect transistor assembled by electrospinning. Journal of the American Ceramic Society, 2008, 91(2): 656–659

    Google Scholar 

  122. Wang W, Huang H M, Li Z Y, Zhang H N, Wang Y, Zheng W, Wang C. Zinc oxide nanofiber gas sensors via electrospinning. Journal of the American Ceramic Society, 2008, 91(11): 3817–3819

    Google Scholar 

  123. Viswanathamurthi P, Bhattarai N, Kim H Y, Lee D R. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology, 2004, 15(3): 320–323

    Google Scholar 

  124. Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 1953, 100(9): 411–419

    Google Scholar 

  125. Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183–2187

    Google Scholar 

  126. Shen X P, Yuan A H, Hu Y M, Jiang Y, Xu Z, Hu Z. Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology, 2005, 16(10): 2039–2043

    Google Scholar 

  127. Wei A, Sun X W, Xu C X, Dong Z L, Yu M B, Huang W. Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters, 2006, 88(21): 213102-1–213102-3

    Google Scholar 

  128. Unalan H E, Hiralal P, Rupesinghe N, Dalal S, Milne W I, Amaratunga G A J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology, 2008, 19(25): 255608-1–255608-5

    Google Scholar 

  129. Lommens P, Thourhout D V, Smet P F, Poelman D, Hens Z. Electrophoretic deposition of ZnO nanoparticles, from micropatterns to substrate coverage. Nanotechnology, 2008, 19(24): 245301-1–245301-6

    Google Scholar 

  130. Yang H Y, Lau S P, Yu S F, Huang L, Tanemura M, Tanaka J, Okita T, Hng H H. Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology, 2005, 16(8): 1300–1303

    Google Scholar 

  131. Zhang H Z, Wang R M, Zhu Y W. Effect of adsorbates on fieldelectron emission from ZnO nanoneedle arrays. Journal of Applied Physics, 2004, 96(1): 624–628

    Google Scholar 

  132. Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Applied Physics Letters, 2004, 85(8): 1407–1409

    Google Scholar 

  133. Ham H, Shen G Z, Cho J H, Lee T J, Seo S H, Lee C J. Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chemical Physics Letters, 2005, 404(1–3): 69–73

    Google Scholar 

  134. Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13(10): 811–814

    Google Scholar 

  135. Xu C X, Sun X W, Fang S N, Yang X H, Yu M B, Zhu G P, Cui Y P. Electrochemically deposited zinc oxide arrays for field emission. Applied Physics Letters, 2006, 88(16): 161921-1–161921-3

    Google Scholar 

  136. Minami T, Miyata T, Yamamoto T. Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surface and Coatings Technology, 1998, 108-109: 583–587

    Google Scholar 

  137. Xu C X, Sun X W, Chen B J. Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 2004, 84(9): 1540–1542

    Google Scholar 

  138. Yeong K S, Maung K H, Thong J T L. The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires. Nanotechnology, 2007, 18(18): 185608-1–185608-4

    Google Scholar 

  139. Ye C H, Bando Y, Fang X S, Shen G Z, Golberg D. Enhanced field emission performance of ZnO nanorods by two alternative approaches. Journal of Physical Chemistry C, 2007, 111(34): 12673–12676

    Google Scholar 

  140. Chang C C, Chang C S. Site-specific growth to control ZnO nanorods density and related field emission properties. Solid State Communications, 2005, 135(11–12): 765–768

    Google Scholar 

  141. Liu J, She J C, Deng S Z, Chen J, Xu N S. Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. Journal of Physical Chemistry C, 2008, 112(31): 11685–11690

    Google Scholar 

  142. Zhao Q, Zhang H Z, Zhu Y W, Feng S Q, Sun X C, Xu J, Yu D P. Morphological effects on the field emission of ZnO nanorod arrays. Applied Physics Letters, 2005, 86(20): 203115-1–203115-3

    Google Scholar 

  143. Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires. Advanced Materials, 2004, 16(22): 2028–2032

    Google Scholar 

  144. Yoo J, Park W I, Yi G C. Electrical and optical characteristics of hydrogen-plasma treated ZnO nanoneedles. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2005, 23(5): 1970–1974

    Google Scholar 

  145. Li C, Fang G J, Yuan L Y, Liu N S, Li J, Li D J, Zhao X Z. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment. Applied Surface Science, 2007, 253(20): 8748–8482

    Google Scholar 

  146. Zhao Q, Xu X Y, Song X F, Zhang X Z, Yu D P, Li C P, Guo L. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen. Applied Physics Letters, 2006, 88(3): 033102-1–033102-3

    Google Scholar 

  147. Li Q H, Wan Q, Chen Y J, Wang T H, Jia H B, Yu D P. Stable field emission from tetrapod-like ZnO nanostructures. Applied Physics Letters, 2004, 85(4): 636–638

    Google Scholar 

  148. Liao L, Li J C, Wang D F, Liu C, Fu Q. Electron field emission studies on ZnO nanowires. Materials Letters, 2005, 59(19-20): 2465–2467

    Google Scholar 

  149. Cheng J P, Zhang Y J, Guo R Y. Field emission properties of ZnO single crystal microtubes. Journal of Applied Physics, 2009, 105(3): 0234103-1–0234103-4

    Google Scholar 

  150. Liu J P, Huang X T, Li Y Y, Ji X X, Li Z K, He X, Sun F L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. Journal of Physical Chemistry C, 2007, 111(13): 4990–4997

    Google Scholar 

  151. Dong L F, Jiao J, Tuggle D W, Petty J M, Elliff S A, Coulter M. ZnO nanowires formed on tungsten substrates and their electron field emission properties. Applied Physics Letters, 2003, 82(7): 1096–1098

    Google Scholar 

  152. Umar A, Kim S H, Lee H, Lee N, Hahn Y B. Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. Journal of Physics D, Applied Physics, 2008, 41(6): 065412-1–065412-6

    Google Scholar 

  153. Huang M H, Mao S, Feick H, Yan H, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897–1899

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuquan Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, M., Gong, P. & Gu, X. Review on one-dimensional ZnO nanostructures for electron field emitters. Front. Optoelectron. 6, 386–412 (2013). https://doi.org/10.1007/s12200-013-0357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0357-3

Keywords

Navigation