Skip to main content
Log in

Status and prospects for phosphor-based white LED packaging

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

The status and prospects for high-power, phosphor-based white light-emitting diode (LED) packaging have been presented. A system view for packaging design is proposed to address packaging issues. Four aspects of packaging are reviewed: optical control, thermal management, reliability and cost. Phosphor materials play the most important role in light extraction and color control. The conformal coating method improves the spatial color distribution (SCD) of LEDs. High refractive index (RI) encapsulants with high transmittance and modified surface morphology can enhance light extraction. Multi-phosphor-based packaging can realize the control of correlated color temperature (CCT) with high color rendering index (CRI). Effective thermal management can dissipate heat rapidly and reduce thermal stress caused by the mismatch of the coefficient of thermal expansion (CTE). Chip-on-board (CoB) technology with a multilayer ceramic substrate is the most promising method for high-power LED packaging. Low junction temperature will improve the reliability and provide longer life. Advanced processes, precise fabrication and careful operation are essential for high reliability LEDs. Cost is one of the biggest obstacles for the penetration of white LEDs into the market for general illumination products. Mass production in terms of CoB, system in packaging (SiP), 3D packaging and wafer level packaging (WLP) can reduce the cost significantly, especially when chip cost is lowered by using a large wafer size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holonyak J N, Bevacqua S F.,, Coherent (visible) light emission from Ga(As1-x Px) junctions. Applied Physics Letters, 1962, 1(4): 82–83

    Article  Google Scholar 

  2. Dupuis R D, Krames M R., History, development, and applications of high-brightness visible light-emitting diodes. Journal of Lightwave Technology, 2008, 26(9): 1154–1171

    Article  Google Scholar 

  3. Lee Y J, Lu T C, Kuo H C, Wang S C., High brightness GaN-based light-emitting diodes. Journal of Display Technology, 2007, 3(2): 118–125

    Article  Google Scholar 

  4. Nakamura S, Mukai T, Senoh M., High-power GaN P-N junction blue-light-emitting diodes. Japanese Journal of Applied Physics, 1991, 30(12A): L1998–L2001

    Article  Google Scholar 

  5. Nakamura S, Senoh M, Mukai T., High-power InGaN/GaN doubleheterostructure violet light emitting diodes. Applied Physics Letters, 1993, 62(19): 2390–2392

    Article  Google Scholar 

  6. Schlotter P, Schmidt R, Schneider J., Luminescence conversion of blue light emitting diodes. Applied Physics A: Materials Science & Processing, 1997, 64(4): 417–418

    Article  Google Scholar 

  7. Nakamura S, Pearton S, Fasol G., The Blue Laser Diode: GaN Based Light Emitters and Lasers. 2nd ed. Berlin: Springer, 1997, 215–230

    Google Scholar 

  8. Evans D L. High-luminance LEDs replace incandescent lamps in new applications. In: Light-Emitting Diodes: Research, Manufacturing, and Applications. San Jose: SPIE, 1997, 3002: 142–153

    Google Scholar 

  9. Steranka F M, Bhat J C, Collins D, Cook L, Craford M G, Fletcher R, Gardner N, Grillot P, Goetz W, Keuper M, Khare R, Kim A, Krames M, Harbers G, Ludowise M, Martin P S, Misra M, Mueller G, Mueller-Mach R, Rudaz S, Shen Y-C, Steigerwald D, Stockman S, Subramanya S, Trottier T, Wierer J J., High power LEDs: technology status and market applications. Physica Status Solidi A, 2002, 194(2): 380–388

    Article  Google Scholar 

  10. Craford M G. LEDs for solid state lighting and other emerging applications: status, trends, and challenges. In: Fifth International Conference on Solid State Lighting. San Diego: SPIE, 2005, 5941: 594101

    Google Scholar 

  11. Wang K, Luo X, Liu Z, Zhou B, Gan Z, Liu S., Optical analysis of an 80-W light-emitting-diode street lamp. Optical Engineering, 2008, 47(1): 013002

    Article  Google Scholar 

  12. OIDA. Light emitting diodes (LEDs) for general illumination, an OIDA technology roadmap update 2002. 2002, http://lighting. sandia.gov/lightingdocs/OIDA_SSL_LED_Roadmap_Full.pdf

  13. LEDs Magazine. LED chips set new R&D records. 2008, http://www.ledsmagazine.com/features/5/10/5

  14. Haque S, Steigerwald D, Rudaz S, Steward B, Bhat J, Collins D, Wall F, Subramanya S, Elpedes C, Elizondo P, Martin P S. Packaging challenges of high-power LEDs for solid state lighting. 2000, http://www.lumileds.com/pdfs/techpaperspres/manuscript_IMAPS_2003.PDF

  15. Hahn B, Weimar A, Peter M, Baur J., High-power InGaN LEDs: present status and future prospects. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XII. San Jose: SPIE, 2008, 6910: 691004

    Google Scholar 

  16. Collins W D, Krames M R, Verhoeckx G J, Martin van Leth N J. US Patent, 6576488, 2001

  17. Yum J H, Seo S Y, Lee S, Sung Y E., Comparison of Y3Al5O12: Ce0.05 phosphor coating methods for white-light-emitting diode on gallium nitride. In: Solid State Lighting and Displays. San Diego: SPIE, 2001, 4445: 60–69

    Google Scholar 

  18. Loh B P, Medendorp N W Jr, Andrews P, Fu Y, Laughner M, Letoquin R. US Patent, 20080079017 A1, 2008

  19. Braune B, Petersen K, Strauss J, Kromotis P, Kaempf M., A new wafer level coating technique to reduce the color distribution of LEDs. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XI. San Jose: SPIE, 2007, 6486: 64860X

    Google Scholar 

  20. Yamada K, Imai Y, Ishii K., Optical simulation of light source devices composed of blue LEDs and YAG phosphor. Journal of Light and Visual Environment, 2003, 27(2): 70–74

    Article  Google Scholar 

  21. Zhu Y, Narendran N, Gu Y., Investigation of the optical properties of YAG:Ce phosphor. In: Sixth International Conference on Solid State Lighting. San Diego: SPIE, 2006, 6337: 63370S

    Google Scholar 

  22. Arik M, Setlur A, Weaver S, Haitko D, Petroski J., Chip to system levels thermal needs and alternative thermal technologies for high brightness LEDs. Journal of Electronic Packaging, 2007, 129(3): 328–338

    Article  Google Scholar 

  23. Luo H, Kim J K, Schubert E F, Cho J, Sone C, Park Y., Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied Physics Letters, 2005, 86(24): 243505

    Article  Google Scholar 

  24. Luo H, Kim J K, Xi Y, Schubert E F, Cho J, Sone C, Park Y., Analysis of high-power packages for white-light-emitting diode lamps with remote phosphor. Materials Research Society, 2006, 892: 187–194

    Google Scholar 

  25. Kim J K, Luo H, Schubert E F, Cho J, Sone C, Park Y., Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics, 2005, 44(20-23): L649–L651

    Article  Google Scholar 

  26. Fan B F, Wu H, Zhao Y, Xian Y L, Wang G., Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes. IEEE Photonics Technology Letters, 2007, 19(15): 1121–1123

    Article  Google Scholar 

  27. Jordan R C, Bauer J, Oppermann H. Optimized heat transfer and homogeneous color converting for ultra high brightness LED package. In: Photonics in the Automobile II. Strasbourg: SPIE, 2006, 6198: 61980B

    Google Scholar 

  28. Narendran N. Improved performance white LED. In: Fifth International Conference on Solid State Lighting. San Diego: SPIE, 2005, 5941: 594108

    Google Scholar 

  29. Narendran N, Gu F, Freyssinier-Nova J P, Zhu Y., Extracting phosphor-scattered photons to improve white LED efficiency. Physica Status Solidi A, 2005, 202(6): R60–R62

    Article  Google Scholar 

  30. Liu Z Y, Liu S, Wang K, Luo X B. Analysis of factors affecting color distribution of white LEDs. In: Proceedings of 2008 International Conference on Electronic Packaging Technology and High Density Packaging. 2008, 4607013-1-4607013-8

  31. Allen S C, Steckl A J., ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection. Journal of Display Technology, 2007, 3(2): 155–159

    Article  Google Scholar 

  32. Liu Z Y, Liu S, Wang K, Luo X B., Optical analysis of color distribution in white LEDs with various packaging methods. IEEE Photonics Technology Letters, 2008, 20(24): 2027–2029

    Article  Google Scholar 

  33. Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamura S., Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters, 2004, 84 (6): 855–857

    Article  Google Scholar 

  34. Huang H W, Kao C C, Chu J T, Wang W C, Lu T C, Kuo H C, Wang S C, Yu C C, Kuo S Y., Investigation of InGaN/GaN light emitting diodes with nano-roughened surface by excimer laser etching method. Materials Science and Engineering B, 2007, 136(2-3): 182–186

    Article  Google Scholar 

  35. Gao H Y, Yan F W, Fan Z C, Li J M, Zeng Y P, Wang G H., Improved light extraction of GaN-based LEDs with nanoroughened p-GaN surfaces. Chinese Physics Letters, 2008, 25(9): 3448–3451

    Article  Google Scholar 

  36. Mont F W, Kim J K, Schubert M F, Luo H, Schubert E F, Siegel R W. High refractive index nanoparticle-loaded encapsulants for light-emitting diodes. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XI. San Jose: SPIE, 2007, 6486: 64861C

    Google Scholar 

  37. Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L., Solid-state lighting: failure analysis of white LEDs. Journal of Crystal Growth, 2004, 268(3–4): 449–456

    Article  Google Scholar 

  38. Norris AW, Bahadur M, Yoshitake M. Novel silicone materials for LED packaging. In: Fifth International Conference on Solid State Lighting. San Diego: SPIE, 2005, 5941: 594115

    Google Scholar 

  39. Bahadur M, Norris A W, Zarisfi A, Alger J S, Windiate C C., Silicone materials for LED packaging. In: Sixth International Conference on Solid State Lighting. San Diego: SPIE, 2006, 6337: 63370F

    Google Scholar 

  40. Lee S J. Light-emitting diode lamp design by Monte Carlo photon simulation. In: Light-Emitting Diodes: Research, Manufacturing, and Applications V. San Jose: SPIE, 2001, 4278: 99–108

    Google Scholar 

  41. West R S., Side-emitting high-power LEDs and their application in illumination. In: Solid State Lighting II. Seattle: SPIE, 2002, 4776: 171–175

    Google Scholar 

  42. Chang J G, Liao C L D, Hwang C C., Enhancement of the optical performances for the LED backlight systems with a novel lens cap. In: Novel Optical Systems Design and Optimization IX. San Diego: SPIE, 2006, 6289: 62890X

    Google Scholar 

  43. Chao P C P, Liao L D, Chiu C W. Design of a novel LED lens cap and optimization of LED placement in a large area direct backlight for LCD-TVs. In: Photonics in Multimedia. Strasbourg: SPIE, 2006, 6196: 61960N

    Google Scholar 

  44. Chi W, George N., Light-emitting diode illumination design with a condensing sphere. Journal of the Optical Society of America A, 2006, 23(9): 2295–2298

    Article  Google Scholar 

  45. Liu Z Y, Liu S, Wang K, Luo X B., Effects of phosphor’s location on LED packaging performance. In: Proceedings of 2008 International Conference on Electronic Packaging Technology and High Density Packaging. 2008, 4606982-1-4606982-7

  46. Wang D M, Chen S H, Wang M, Xiang S H. The design and fabrication of microlens and LED integrated packaging. In: Proceedings of the 7th International Conference on Electronic Packaging Technology, Shanghai. 2006, 359803-1-359803-3

  47. Zachau M, Becker D, Berben D, Fiedler T, Jermann F, Zwaschka F. Phosphors for solid state lighting. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XII. San Jose: SPIE, 2008, 6910: 691010

    Google Scholar 

  48. Mesli T. Improvement of ultra-high-brightness white LEDs. In: Manufacturing LEDs for Lighting and Displays. Berlin: SPIE, 2007, 6797: 67970N

    Google Scholar 

  49. Braune B, Bogner G, Brunner H, Kraeuter G, Hoehn K. New developments in LED lighting by novel phosphors. In: Light-Emitting Diodes: Research, Manufacturing, and Applications VII. San Jose: SPIE, 2003, 4996: 87–94

    Google Scholar 

  50. Mueller-Mach R, Mueller G O, Krames M R. Phosphor materials and combinations for illumination-grade white PCLEDs. In: Third International Conference on Solid State Lighting. San Diego: SPIE, 2004, 5187: 115–122

    Google Scholar 

  51. Mueller-Mach R, Mueller G O, Krames M R, Trottier T., Highpower phosphor-converted light-emitting diodes based on IIINitrides. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2): 339–345

    Article  Google Scholar 

  52. Ohno Y. Color rendering and luminous efficacy of white LED spectra. In: Fourth International Conference on Solid State Lighting. Denver: SPIE, 2004, 5530: 88–98

    Google Scholar 

  53. Braune B, Brunner H, Strauss J, Petersen K., Light conversion in opto semiconductor devices: from the development of luminous materials to products with customized colors. In: Optoelectronic Devices: Physics, Fabrication, and Application II. Boston: SPIE, 2005, 6013: 60130D

    Google Scholar 

  54. Chou H Y, Hsu T H, Yang T H. Effective method for improving illuminating properties of white-light LEDs. In: Light-Emitting Diodes: Research, Manufacturing, and Applications IX. San Jose: SPIE, 2005, 5739: 33–41

    Google Scholar 

  55. Krames M R, Shchekin O B, Mueller-Mach R, Mueller G O, Zhou L, Harbers G, Craford M G., Status and future of high-power lightemitting diodes for solid-state lighting. Journal of Display Technology, 2007, 3(2): 160–175

    Article  Google Scholar 

  56. Summers C J, Wagner B K, Menkara H., Solid state lighting: diode phosphors. In: Third International Conference on Solid State Lighting. San Diego: SPIE, 2004, 5187: 123–132

    Google Scholar 

  57. Wu H, Zhang X, Guo C, Xu J, Wu M, Su Q., Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors. IEEE Photonics Technology Letters, 2005, 17(6): 1160–1162

    Article  MATH  Google Scholar 

  58. Mueller-Mach R, Mueller G, Krames M R, Höppe H A, Stadler F, Schnick W, Juestel T, Schmidt P., Highly efficient all-nitride phosphor-converted white light emitting diode. Physica Status Solidi A, 2005, 202(9): 1727–1732

    Article  Google Scholar 

  59. Taguchi T. Overview: present status and future prospect of system and design in white LED lighting technologies. In: Fourth International Conference on Solid State Lighting. Denver: SPIE, 2004, 5530: 7–16

    Google Scholar 

  60. Nayama S, Itoh K., Case Study on combination of fluorescent materials for white LED to obtain high color rendering indexes. Journal of Light and Visual Environment, 2006, 30(1): 39–42

    Article  Google Scholar 

  61. Kobashi K, Taguchi T. Warm white LEDs lighting over Ra = 95 and its applications. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XI. San Jose, CA, USA: SPIE, 2007, 6486: 648610

    Google Scholar 

  62. Uchida Y, Taguchi T. Theoretical and experimental luminous characteristics of white LEDs composed of multiphosphors and near-UV LED for lighting. In: Light-Emitting Diodes: Research, Manufacturing, and Applications VII. San Jose: SPIE, 2003, 4996: 166–173

    Google Scholar 

  63. Hui K N, Lai P T, Choi H W., Spectral conversion with fluorescent microspheres for light emitting diodes. Optics Express, 2008, 16 (1): 13–18

    Article  Google Scholar 

  64. Lee H, Park Y, Chang M, Kim G, Hong S, Won H, Lee J, Oh Y., The enhancement of light efficiency using modified phosphor which is coated sub-micro size sulfonated polystyrene beads. In: Nanophotonic Materials III. San Diego: SPIE, 2006, 6321: 63210B

    Google Scholar 

  65. Arik M, Becker C A, Weaver S E, Petroski J.Thermal management of LEDs: package to system. In: Third International Conference on Solid State Lighting. San Diego: SPIE, 2004, 5187: 64–75

    Google Scholar 

  66. Kuckmann O.High-power LED arrays: special requirements on packaging technology. In: Light-Emitting Diodes: Research, Manufacturing, and Applications X. San Jose: SPIE, 2006, 6134: 613404

    Google Scholar 

  67. Hu J, Yang L, Shin M W.Thermal effects of moisture inducing delamination in light-emitting diode packages. In: Advanced LEDs for Solid State Lighting. Gwangju: SPIE, 2006, 6355: 635516

    Google Scholar 

  68. You J P, He Y, Shi F G. Thermal management of high power LEDs: Impact of die attach materials. In: Proceedings of 2007 International Microsystems, Packaging, Assembly and Circuits Technology. 2007, 239–242

  69. Tu K N, Gusak A M, Li M., Physics and materials challenges for lead-free solders. Journal of Applied Physics, 2003, 93(3): 1335–1353

    Article  Google Scholar 

  70. Park J W, Yoon Y B, Shin S H, Choi S H., Joint structure in high brightness light emitting diode (HB LED) packages. Materials Science and Engineering: A, 2006, 441(1-2): 357–361

    Article  Google Scholar 

  71. Fan B F, Zhao Y, Xian Y L, Wang G. Thermal simulation studies of high-power light-emitting diodes. In: Advanced LEDs for Solid State Lighting. Gwangju: SPIE, 2006, 6355: 63550D

    Google Scholar 

  72. Arik M, Weaver S., Effect of chip and bonding defects on the junction temperatures of high-brightness light-emitting diodes. Optical Engineering, 2005, 44(11): 111305

    Article  Google Scholar 

  73. Hartmann P, Wenzl F P, Sommer C, Pachler P, Hoschopf H, Schweighart M, Hartmann M, Kuna L, Jakopic G, Leising G, Tasch S. White LEDs and modules in chip-on-board technology for general lighting. In: Sixth International Conference on Solid State Lighting. San Diego: SPIE, 2006, 6337: 63370I

    Google Scholar 

  74. Petroski J. Spacing of high-brightness LEDs on metal substrate PCB’s for proper thermal performance. In: Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004, 2: 507–514

    Article  Google Scholar 

  75. DeMilo C, Bergad C, Forni R, Brukilacchio T. Thermally induced stresses resulting from coefficient of thermal expansion differentials between an LED sub-mount material and various mounting substrates. In: Light-Emitting Diode: Research, Manufacturing, and Applications XI. San Jose: SPIE, 2007, 6486: 64860N

    Google Scholar 

  76. Cho H M, Kim H J., Metal-core printed circuit board with alumina layer by aerosol deposition process. IEEE Electron Device Letters, 2008, 29(9): 991–993

    Article  MathSciNet  Google Scholar 

  77. Kurokawa Y, Utsumi K, Takamizawa H, Kamata T, Noguchi S., AlN substrates with high thermal conductivity. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1985, 8 (2): 247–252

    Article  Google Scholar 

  78. Occhionero M A, Adams R W., AlSiC, and AlSiC hybrid composites for flip chips, optoelectronics, power, and high brightness LED thermal management solutions. In: Proceedings of the 6th International Conference on Electronic Packaging Technology. 2005, 576–580

  79. Hu J, Yang L, Shin M W., Thermal and mechanical analysis of high-power LEDs with ceramic packages. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 297–303

    Article  Google Scholar 

  80. Park J K, Shin H D, Park Y S, Park S Y, Hong K P, Kim B M., A suggestion for high power LED package based on LTCC. In: Proceedings of the 56th Electronic Components and Technology Conference. 2006, 1070–1075

  81. Shin M W. Thermal design of high-power LED package and system. In: Advanced LEDs for Solid State Lighting. Gwangju: SPIE, 2006, 6355: 635509

    Google Scholar 

  82. Yang L, Jang S, Hwang W, Shin M., Thermal analysis of high power GaN-based LEDs with ceramic package. Thermochimica Acta, 2007, 455(1-2): 95–99

    Article  Google Scholar 

  83. Carl H Z. New material options for light-emitting diode packaging. In: Light-Emitting Diodes: Research, Manufacture and Applications VIII. Bellingham: SPIE, 2004, 5366: 173–182

    Google Scholar 

  84. Zweben C.Advances in LED packaging and thermal management materials. In: Light-Emitting Diodes: Research, Manufacturing, and Applications XII. San Jose: SPIE, 2008, 6910: 691018

    Google Scholar 

  85. Kim K M, Shin S H, Lee Y K, Choi S M, Kwon Y S., Aluminiumbased packaging platform for LED using selectively anodising method. Electronics Letters, 2008, 44(1): 24–25

    Article  Google Scholar 

  86. Gao S, Hong J, Shin S, Lee Y, Choi S, Yi S.Design optimization on the heat transfer and mechanical reliability of high brightness light emitting diodes (HBLED) package. In: Proceedings of the 58th Electronic Components and Technology Conference. Orlando: IEEE, 2008, 798–803

    Google Scholar 

  87. Kai Z, Yuen MMF.Heat spreader with aligned CNTs designed for thermal management of HB-LED packaging and microelectronic packaging. In: Proceedings of the 7th International Conference on Electronic Packaging Technology. 2006, 1–4

  88. Zhang K, Yuen M M F, Wang N, Miao J Y, Xiao D G W, Fan H B. Thermal interface material with aligned CNT and its application in HB-LED packaging. In: Proceedings of the 56th Electronic Components and Technology Conference 2006, 177–182

  89. Christensen A, Graham S., Thermal effects in packaging high power light emitting diode arrays. Applied Thermal Engineering, 2009, 29(2-3): 364–371

    Article  Google Scholar 

  90. Liu S, Lin T, Luo X B, Chen M X, Jiang X P.A microjet array cooling system for thermal management of active radars and highbrightness LEDs. In: Proceedings of the 56th Electronic Components and Technology Conference. 2006, 1634–1638

  91. Luo X B, Liu S., A microjet array cooling system for thermal management of high-brightness LEDs. IEEE Transactions on Advanced Packaging, 2007, 30(3): 475–484

    Article  Google Scholar 

  92. Luo X B, Chen W, Sun R X, Liu S., Experimental and numerical investigation of a microjet-based cooling system for high power LEDs. Heat Transfer Engineering, 2008, 29(9): 774–781

    Article  Google Scholar 

  93. Liu S, Yang J H, Gan Z Y, Luo X B., Structural optimization of a microjet based cooling system for high power LEDs. International Journal of Thermal Sciences, 2008, 47(8): 1086–1095

    Article  Google Scholar 

  94. LEDs Magazine. Lumileds recalls some Luxeons, halts production line. 2008, http://ledsmagazine.com/news/5/1/19

  95. Hsu Y C, Lin Y K, Chen M H, Tsai C C, Kuang J H, Huang S B, Hu H L, Su Y I, Cheng W H., Failure mechanisms associated with lens shape of high-power LED modules in aging test. IEEE Transactions on Electron Devices, 2008, 55(2): 689–694

    Article  Google Scholar 

  96. Hu J Z, Yang L Q, Shin M W., Mechanism and thermal effect of delamination in light-emitting diode packages. Microelectronics Journal, 2007, 38(2): 157–163

    Article  Google Scholar 

  97. Jayasinghe L, Dong T M, Narendran N. Is the thermal resistance coefficient of high-power LEDs constant? In: Seventh International Conference on Solid State Lighting. San Diego: SPIE, 2007, 6669: 666911

    Google Scholar 

  98. Meneghini M, Trevisanello L, Sanna C, Mura G, Vanzi M, Meneghesso G, Zanoni E., High temperature electro-optical degradation of InGaN/GaN HBLEDs. Microelectronics Reliability, 2007, 47(9–11): 1625–1629

    Article  Google Scholar 

  99. Su Y K, Chen K C, Lin C L., Ultra high power light-emitting diodes with electroplating technology. In: Proceedings of IEEE Conference on Electron Devices and Solid-State Circuits. 2007, 19–22

  100. Trevisanello L R, Meneghini M, Mura G, Sanna C, Buso S, Spiazzi G, Vanzi M, Meneghesso G, Zanoni E.Thermal stability analysis of high brightness LED during high temperature and electrical aging. In: Seventh International Conference on Solid State Lighting. San Diego: SPIE, 2007, 6669: 666913

    Google Scholar 

  101. Biber C. LED light emission as a function of thermal conditions. In: Proceedings of the 24th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. 2008, 180–184

  102. Buso S, Spiazzi G, Meneghini M, Meneghesso G., Performance degradation of high-brightness light emitting diodes under DC and pulsed bias. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 312–322

    Article  Google Scholar 

  103. Hwang N. Failure analysis matrix of light emitting diodes for general lighting applications. In: Proceedings of the 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits. 2008, 1–4

  104. Trevisanello L, Meneghini M, Mura G, Vanzi M, Pavesi M, Meneghesso G, Zanoni E., Accelerated life test of high brightness light emitting diodes. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 304–311

    Article  Google Scholar 

  105. Lim C H, Jeung W K, Choi S M. LED packaging using high sag rectangular microlens array. In: Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration. Strasbourg: SPIE, 2006, 6185: 618516

    Google Scholar 

  106. Tsou C F, Huang Y S., Silicon-based packaging platform for lightemitting diode. IEEE Transactions on Advanced Packaging, 2006, 29(3): 607–614

    Article  Google Scholar 

  107. Wall F, Martin P S, Harbers G.High-power LED package requirements. In: Third International Conference on Solid State Lighting. San Diego: SPIE, 2004, 5187: 85–92

    Google Scholar 

  108. Muller G O, Muller-Mach R B, Krames M R, Schmidt P J, Bechtel H H, Meyer J, de Graaf J, Kop TA. US Patent, 20080138919, 2008

  109. Fujita S, Yoshihara S, Sakamoto A, Yamamoto S, Tanabe S. YAG glass-ceramic phosphor for white LED (I): background and development. In: Fifth International Conference on Solid State Lighting. San Diego: SPIE, 2005, 5941: 594111

    Google Scholar 

  110. Tanabe S, Fujita S, Yoshihara S, Sakamoto A, Yamamoto S.YAG glass-ceramic phosphor for white LED (II): luminescence characteristics. In: Fifth International Conference on Solid State Lighting. San Diego: SPIE, 2005, 5941: 594112

    Google Scholar 

  111. Wang H, Lee K S, Ryu J H, Hong C H, Cho Y H., Active packaging method for light-emitting diode lamps with photosensitive epoxy resins. IEEE Photonics Technology Letters, 2008, 20(2): 87–89

    Article  Google Scholar 

  112. Wang H, Ryu J H, Lee K S, Tan C H, Jin L, Li S, Hong C H, Cho Y H, Liu S., Active packing method for blue light-emitting diodes with photosensitive polymerization: formation of self-focusing encapsulates. Optics Express, 2008, 16(6): 3680–3685

    Article  Google Scholar 

  113. Bortz J C, Shatz N E, Pitou D.Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target. In: Novel Optical Systems Design and Optimization III. San Diego: SPIE, 2000, 4092: 130–138

    Google Scholar 

  114. Cvetkovic A, Dross O, Chaves J, Benítez P, Miñano J C, Mohedano R.Etendue preserving mixing and projection optics for high brightness LEDs applied to automotive headlamps. In: International Optical Design Conference 2006. Vancouver: SPIE, 2006, 6342: 63420R

    Google Scholar 

  115. Wang L, Qian K Y, Luo Y., Discontinuous free-form lens design for prescribed irradiance. Applied Optics, 2007, 46(18): 3716–3723

    Article  Google Scholar 

  116. Ding Y, Liu X, Zheng Z R, Gu P F., Freeform LED lens for uniform illumination. Optics Express, 2008, 16(17): 12958–12966

    Article  Google Scholar 

  117. Wang K, Liu S, Luo X B, Liu Z Y, Chen F. Optical analysis of a 3W light-emitting diode (LED) MR16 lamp. In: Proceedings of International Conference on Electronic Packaging Technology and High Density Packaging. 2008, 4607028-1-4607028-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Liu, S., Wang, K. et al. Status and prospects for phosphor-based white LED packaging. Front. Optoelectron. China 2, 119–140 (2009). https://doi.org/10.1007/s12200-009-0011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-009-0011-2

Keywords

Navigation