Skip to main content
Log in

Nuclear Lamin Protein C Is Linked to Lineage-Specific, Whole-Cell Mechanical Properties

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Lamin proteins confer nuclear integrity and relay external mechanical cues that drive changes in gene expression. However, the influence these lamins have on whole-cell mechanical properties is unknown. We hypothesized that protein expression of lamins A, B1, and C would depend on the integrity of the actin cytoskeleton and correlate with cellular elasticity and viscoelasticity.

Methods

To test these hypotheses, we examined the protein expression of lamins A, B1, and C across five different cell lines with varied mechanical properties. Additionally, we treated representative “soft/stiff” cell types with cytochalasin D and LMNA siRNA to determine the effect of a more compliant whole-cell phenotype on lamin A, B1 and C protein expression.

Results

A positive, linear correlation existed between lamin C protein expression and average cell moduli/apparent viscosity. Though moderate correlations existed between lamin A/B1 protein expression and whole-cell mechanical properties, they were statistically insignificant. Inhibition of actin polymerization, via cytochalasin D treatment, resulted in reduced cell elasticity, viscoelasticity, and lamin A and C protein expression in “stiff” MG-63 cells. In “soft” HEK-293T cells, this treatment reduced cell elasticity and viscoelasticity but did not affect lamin B1 or C protein expression. Additionally, LMNA siRNA treatment of MG-63 cells decreased whole-cell elasticity and viscoelasticity.

Conclusion

These findings suggest that lamin C protein expression is strongly associated with whole-cell mechanical properties and could potentially serve as a biomarker for mechanophenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Akter, R., D. Rivas, G. Geneau, H. Drissi, and G. Duque. Effect of lamin A/C knockdown on osteoblast differentiation and function. J. Bone Miner. Res. 24(2):283–293, 2009.

    Article  Google Scholar 

  2. Alam, S. G., Q. Zhang, N. Prasad, Y. Li, S. Chamala, R. Kuchibhotla, B. Kc, V. Aggarwal, S. Shrestha, A. L. Jones, S. E. Levy, K. J. Roux, J. A. Nickerson, and T. P. Lele. The mammalian linc complex regulates genome transcriptional responses to substrate rigidity. Sci. Rep. 6:38063, 2016.

    Article  Google Scholar 

  3. Bera, M., S. R. Ainavarapu, and K. Sengupta. Significance of 1b and 2b domains in modulating elastic properties of lamin A. Sci. Rep. 6:27879, 2016.

    Article  Google Scholar 

  4. Bermeo, S., C. Vidal, H. Zhou, and G. Duque. Lamin a/c acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the wnt/beta-catenin pathway. J. Cell Biochem. 116(10):2344–2353, 2015.

    Article  Google Scholar 

  5. Bordeleau, F., J. P. Califano, Y. L. Negron Abril, B. N. Mason, D. J. LaValley, S. J. Shin, R. S. Weiss, and C. A. Reinhart-King. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. Proc. Natl. Acad. Sci. USA 112(27):8314–8319, 2015.

    Article  Google Scholar 

  6. Buxboim, A., J. Swift, J. Irianto, K. R. Spinler, P. C. Dingal, A. Athirasala, Y. R. Kao, S. Cho, T. Harada, J. W. Shin, and D. E. Discher. Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24(16):1909–1917, 2014.

    Article  Google Scholar 

  7. Constantinescu, D., H. L. Gray, P. J. Sammak, G. P. Schatten, and A. B. Csoka. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24(1):177–185, 2006.

    Article  Google Scholar 

  8. Cross, S. E., Y. S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2(12):780–783, 2007.

    Article  Google Scholar 

  9. Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102(11):1307–1318, 2008.

    Article  Google Scholar 

  10. Darling, E. M., M. Topel, S. Zauscher, T. P. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41(2):454–464, 2008.

    Article  Google Scholar 

  11. Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14(6):571–579, 2006.

    Article  Google Scholar 

  12. Dimitriadis, E. K., F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(5):2798–2810, 2002.

    Article  Google Scholar 

  13. Fisher, D. Z., N. Chaudhary, and G. Blobel. Cdna sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc. Natl. Acad. Sci. USA 83(17):6450–6454, 1986.

    Article  Google Scholar 

  14. Fong, L. G., J. K. Ng, J. Lammerding, T. A. Vickers, M. Meta, N. Cote, B. Gavino, X. Qiao, S. Y. Chang, S. R. Young, S. H. Yang, C. L. Stewart, R. T. Lee, C. F. Bennett, M. O. Bergo, and S. G. Young. Prelamin A and lamin A appear to be dispensable in the nuclear lamin A. J. Clin. Invest. 116(3):743–752, 2006.

    Article  Google Scholar 

  15. Gonzalez-Cruz, R. D., V. C. Fonseca, and E. M. Darling. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 109(24):E1523–E1529, 2012.

    Article  Google Scholar 

  16. Hale, C. M., A. L. Shrestha, S. B. Khatau, P. J. Stewart-Hutchinson, L. Hernandez, C. L. Stewart, D. Hodzic, and D. Wirtz. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95(11):5462–5475, 2008.

    Article  Google Scholar 

  17. Harada, T., J. Swift, J. Irianto, J. W. Shin, K. R. Spinler, A. Athirasala, R. Diegmiller, P. C. Dingal, I. L. Ivanovska, and D. E. Discher. Nuclear lamin stiffness is a barrier to 3d migration, but softness can limit survival. J. Cell Biol. 204(5):669–682, 2014.

    Article  Google Scholar 

  18. Ho, C. Y., and J. Lammerding. Lamins at a glance. J. Cell Sci. 125(Pt 9):2087–2093, 2012.

    Article  Google Scholar 

  19. Ihalainen, T. O., L. Aires, F. A. Herzog, R. Schwartlander, J. Moeller, and V. Vogel. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat. Mater. 14(12):1252–1261, 2015.

    Article  Google Scholar 

  20. Irianto, J., C. R. Pfeifer, I. L. Ivanovska, J. Swift, and D. E. Discher. Nuclear lamins in cancer. Cell Mol. Bioeng. 9(2):258–267, 2016.

    Article  Google Scholar 

  21. Janes, K. A. An analysis of critical factors for quantitative immunoblotting. Sci. Signal. 8(371):rs2, 2015.

    Article  Google Scholar 

  22. Ji, J. Y., R. T. Lee, L. Vergnes, L. G. Fong, C. L. Stewart, K. Reue, S. G. Young, Q. Zhang, C. M. Shanahan, and J. Lammerding. Cell nuclei spin in the absence of lamin B1. J. Biol. Chem. 282(27):20015–20026, 2007.

    Article  Google Scholar 

  23. Jung, H. J., C. Coffinier, Y. Choe, A. P. Beigneux, B. S. Davies, S. H. Yang, R. H. Barnes, 2nd, J. Hong, T. Sun, S. J. Pleasure, S. G. Young, and L. G. Fong. Regulation of prelamin a but not lamin C by mir-9, a brain-specific microrna. Proc. Natl. Acad. Sci. USA 109(7):E423–E431, 2012.

    Article  Google Scholar 

  24. Kolb, T., J. Kraxner, K. Skodzek, M. Haug, D. Crawford, K. K. Maass, K. E. Aifantis, and G. Whyte. Optomechanical measurement of the role of lamins in whole cell deformability. J. Biophotonics 10(12):1657–1664, 2017.

    Article  Google Scholar 

  25. Labriola, N. R., and E. M. Darling. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J. Biomech. 48(6):1058–1066, 2015.

    Article  Google Scholar 

  26. Lammerding, J., L. G. Fong, J. Y. Ji, K. Reue, C. L. Stewart, S. G. Young, and R. T. Lee. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281(35):25768–25780, 2006.

    Article  Google Scholar 

  27. Lammerding, J., and R. T. Lee. The nuclear membrane and mechanotransduction: Impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found Symp. 264:264–273, 2005; ((discussion 273–278)).

    Google Scholar 

  28. Lanzicher, T., V. Martinelli, L. Puzzi, G. Del Favero, B. Codan, C. S. Long, L. Mestroni, M. R. Taylor, and O. Sbaizero. The cardiomyopathy lamin A/C d192 g mutation disrupts whole-cell biomechanics in cardiomyocytes as measured by atomic force microscopy loading-unloading curve analysis. Sci. Rep. 5:13388, 2015.

    Article  Google Scholar 

  29. Lee, J. S., C. M. Hale, P. Panorchan, S. B. Khatau, J. P. George, Y. Tseng, C. L. Stewart, D. Hodzic, and D. Wirtz. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93(7):2542–2552, 2007.

    Article  Google Scholar 

  30. Lee, J. M., C. Nobumori, Y. Tu, C. Choi, S. H. Yang, H. J. Jung, T. A. Vickers, F. Rigo, C. F. Bennett, S. G. Young, and L. G. Fong. Modulation of Lmna splicing as a strategy to treat prelamin A diseases. J. Clin. Invest. 126(4):1592–1602, 2016.

    Article  Google Scholar 

  31. Lin, F., and H. J. Worman. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268(22):16321–16326, 1993.

    Google Scholar 

  32. Makhija, E., D. S. Jokhun, and G. V. Shivashankar. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc. Natl. Acad. Sci. USA 113(1):E32–E40, 2016.

    Article  Google Scholar 

  33. Mellad, J. A., D. T. Warren, and C. M. Shanahan. Nesprins linc the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23(1):47–54, 2011.

    Article  Google Scholar 

  34. Neelam, S., T. J. Chancellor, Y. Li, J. A. Nickerson, K. J. Roux, R. B. Dickinson, and T. P. Lele. Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. Proc. Natl. Acad. Sci. USA 112(18):5720–5725, 2015.

    Article  Google Scholar 

  35. Ngoka, L. C. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome Sci. 6:30, 2008.

    Article  Google Scholar 

  36. Ostlund, C., G. Bonne, K. Schwartz, and H. J. Worman. Properties of lamin a mutants found in emery-dreifuss muscular dystrophy, cardiomyopathy and dunnigan-type partial lipodystrophy. J. Cell Sci. 114(Pt 24):4435–4445, 2001.

    Google Scholar 

  37. Pan, W., E. Petersen, N. Cai, G. Ma, J. Run Lee, Z. Feng, K. Liao, and K. Leong. Viscoelastic properties of human mesenchymal stem cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:4854–4857, 2005.

    Google Scholar 

  38. Peter, M., G. T. Kitten, C. F. Lehner, K. Vorburger, S. M. Bailer, G. Maridor, and E. A. Nigg. Cloning and sequencing of cdna clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J. Mol. Biol. 208(3):393–404, 1989.

    Article  Google Scholar 

  39. Rotsch, C., and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78(1):520–535, 2000.

    Article  Google Scholar 

  40. Scaffidi, P., and T. Misteli. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10(4):452–459, 2008.

    Article  Google Scholar 

  41. Shin, J. W., K. R. Spinler, J. Swift, J. A. Chasis, N. Mohandas, and D. E. Discher. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc. Natl. Acad. Sci. USA 110(47):18892–18897, 2013.

    Article  Google Scholar 

  42. Stewart-Hutchinson, P. J., C. M. Hale, D. Wirtz, and D. Hodzic. Structural requirements for the assembly of linc complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314(8):1892–1905, 2008.

    Article  Google Scholar 

  43. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3(4):413–438, 2007.

    Article  Google Scholar 

  44. Swift, J., and D. E. Discher. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127(Pt 14):3005–3015, 2014.

    Article  Google Scholar 

  45. Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104, 2013.

    Article  Google Scholar 

  46. Titushkin, I., and M. Cho. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 93(10):3693–3702, 2007.

    Article  Google Scholar 

  47. Vergnes, L., M. Peterfy, M. O. Bergo, S. G. Young, and K. Reue. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl. Acad. Sci. USA 101(28):10428–10433, 2004.

    Article  Google Scholar 

  48. Vorburger, K., G. T. Kitten, and E. A. Nigg. Modification of nuclear lamin proteins by a mevalonic acid derivative occurs in reticulocyte lysates and requires the cysteine residue of the C-terminal cxxm motif. EMBO J. 8(13):4007–4013, 1989.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jeffrey Morgan for his gift of NHF cells. We would also like to acknowledge the Brown Genomics Core Facility and Dr. Christoph Schorl for assistance with fluorescence-based western blot detection. This work by supported by NIH Grants R01 AR063642 and P20 GM104937 (EMD) and R25 GM083270 (RDGC) and NSF CAREER Award CBET 1253189 (EMD).

Funding

This work by supported by NIH Grants R01 AR063642 and P20 GM104937 (EMD) and R25 GM083270 (RDGC) and NSF CAREER Award CBET 1253189 (EMD).

Conflict of interest

Authors RDGC, JSS, VCF, and EMD have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Contributions

R.D.G.C. and E.M.D. designed all experiments. R.D.G.C. conducted all AFM experiments. R.D.G.C. and V.C.F. conducted all western blot experiments. J.S.S. conduced all qPCR experiments. R.D.G.C. and E.M.D. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Eric M. Darling.

Additional information

Associate Editor Michael King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Cruz, R.D., Sadick, J.S., Fonseca, V.C. et al. Nuclear Lamin Protein C Is Linked to Lineage-Specific, Whole-Cell Mechanical Properties. Cel. Mol. Bioeng. 11, 131–142 (2018). https://doi.org/10.1007/s12195-018-0518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0518-y

Keywords

Navigation