Skip to main content

Advertisement

Log in

Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

An Erratum to this article was published on 07 June 2017

This article has been updated

Abstract

Introduction

From viruses to organelles, fusion of biological membranes is used by diverse biological systems to deliver macromolecules across membrane barriers. Membrane fusion is also a potentially efficient mechanism for the delivery of macromolecular therapeutics to the cellular cytoplasm. However, a key shortcoming of existing fusogenic liposomal systems is that they are inefficient, requiring a high concentration of fusion-promoting lipids in order to cross cellular membrane barriers.

Objectives

Toward addressing this limitation, our experiments explore the extent to which membrane fusion can be amplified by using the process of lipid membrane phase separation to concentrate fusion-promoting lipids within distinct regions of the membrane surface.

Methods

We used confocal fluorescence microscopy to investigate the integration of fusion-promoting lipids into a ternary lipid membrane system that separated into liquid-ordered and liquid-disordered membrane phases. Additionally, we quantified the impact of membrane phase separation on the efficiency with which liposomes transferred lipids and encapsulated macromolecules to cells, using a combination of confocal fluorescence imaging and flow cytometry.

Results

Here we report that concentrating fusion-promoting lipids within phase-separated lipid domains on the surfaces of liposomes significantly increases the efficiency of liposome fusion with model membranes and cells. In particular, membrane phase separation enhanced the delivery of lipids and model macromolecules to the cytoplasm of tumor cells by at least four-fold in comparison to homogenous liposomes.

Conclusions

Our findings demonstrate that phase separation can enhance membrane fusion by locally concentrating fusion-promoting lipids on the surface of liposomes. This work represents the first application of lipid membrane phase separation in the design of biomaterials-based delivery systems. Additionally, these results lay the ground work for developing fusogenic liposomes that are triggered by physical and molecular cues associated with target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

  • 07 June 2017

    An erratum to this article has been published.

Abbreviations

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DOPC:

1,2 Dioleoyl-sn-glycero-3-phosphocholine

DOTAP:

1,2 Dioleoyl–3-trimethylammonium-propane

PEG2000-DPPE:

1,2 Dipalmitoyl-sn-glycerol-3-phosphoethanolamine-N-[Methoxy(Polyethylene glycol)-2000]

Texas Red-DPPE:

Texas Red-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

Oregon Green-DPPE:

Oregon Green-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine

mol%:

Molar fraction

GUV:

Giant unilamellar vesicle

SUV:

Small unilamellar vesicle

Rhodamine B-dextran:

Rhodamine B isothiocyanate-dextran average molecular weight of 10,000

TRITC-dextran:

Tetramethylrhodamine isothiocyanate-dextran average molecular weight of 20,000

References

  1. Alvarez-Erviti, L., Y. Q. Seow, H. F. Yin, C. Betts, S. Lakhal, and M. J. A. Wood. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:341–345, 2011.

    Article  Google Scholar 

  2. Angelova, M. I., and D. S. Dimitrov. Liposome Electroformation. Faraday Discuss. 81:303–311, 1986.

    Article  Google Scholar 

  3. Baker, A. H., A. Kritz, L. M. Work, S. A. Nicklin, and A. Nicklin. Cell-selective viral gene delivery vectors for the vasculature. Exp. Physiol. 90:27–31, 2005.

    Article  Google Scholar 

  4. Batrakova, E. V., and M. S. Kim. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Controll. Release 219:396–405, 2015.

    Article  Google Scholar 

  5. Blosser, M. C., J. B. Starr, C. W. Turtle, J. Ashcraft, and S. L. Keller. Minimal effect of lipid charge on membrane miscibility phase behavior in three ternary systems. Biophys. J. 104:2629–2638, 2013.

    Article  Google Scholar 

  6. Charras, G. T., M. Coughlin, T. J. Mitchison, and L. Mahadevan. Life and times of a cellular bleb. Biophys. J. 94:1836–1853, 2008.

    Article  Google Scholar 

  7. Charras, G. T., C. K. Hu, M. Coughlin, and T. J. Mitchison. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175:477–490, 2006.

    Article  Google Scholar 

  8. Chazal, N., and D. Gerlier. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67:226–237, 2003.

    Article  Google Scholar 

  9. Choi, K. S., H. Aizaki, and M. M. C. Lai. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J. Virol. 79:9862–9871, 2005.

    Article  Google Scholar 

  10. Chollet, P., M. C. Favrot, A. Hurbin, and J. L. Coll. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J. Gene Med. 4:84–91, 2002.

    Article  Google Scholar 

  11. Ciani, L., A. Casini, C. Gabbiani, S. Ristori, L. Messori, and G. Martini. DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery studied by circular dichroism and other biophysical techniques. Biophys. Chem. 127:213–220, 2007.

    Article  Google Scholar 

  12. Ciani, L., S. Ristori, L. Calamai, and G. Martini. DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra. Biochim. Biophys. Acta Biomembr. 1664:70–79, 2004.

    Article  Google Scholar 

  13. Egleton, R. D., and T. P. Davis. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18:1431–1439, 1997.

    Article  Google Scholar 

  14. Filion, M. C., and N. C. Phillips. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta Biomembr. 1329:345–356, 1997.

    Article  Google Scholar 

  15. Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3:362–374, 2003.

    Article  Google Scholar 

  16. Futami, J., M. Kitazoe, T. Maeda, E. Nukui, M. Sakaguchi, J. Kosaka, M. Miyazaki, M. Kosaka, H. Tada, M. Seno, Y. Sasaki, N. H. Huh, M. Namba, and H. Yamada. Intracellular delivery of proteins into mammalian living cells by polyethylenimine-cationization. J. Biosci. Bioeng. 99:95–103, 2005.

    Article  Google Scholar 

  17. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287:1969–1973, 2000.

    Article  Google Scholar 

  18. Gordon, V. D., M. Deserno, C. M. J. Andrew, S. U. Egelhaaf, and W. C. K. Poon. Adhesion promotes phase separation in mixed-lipid membranes. EPL 84:48003, 2008.

    Article  Google Scholar 

  19. Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227, 1999.

    Article  Google Scholar 

  20. Gunawan, R. C., and D. T. Auguste. Immunoliposomes that target endothelium in vitro are dependent on lipid raft formation. Mol. Pharm. 7:1569–1575, 2010.

    Article  Google Scholar 

  21. Gunawan, R. C., and D. T. Auguste. The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials 31:900–907, 2010.

    Article  Google Scholar 

  22. Hac, A. E., H. M. Seeger, M. Fidorra, and T. Heimburg. Diffusion in two-component lipid membranes—a fluorescence correlation spectroscopy and Monte Carlo simulation study. Biophys. J. 88:317–333, 2005.

    Article  Google Scholar 

  23. Heberle, F. A., and G. W. Feigenson. Phase Separation in Lipid Membranes. Cold Spring Harb. Perspect. Biol. 3:a004630, 2011.

    Article  Google Scholar 

  24. Hood, J. L., M. J. Scott, and S. A. Wickline. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 448:41–49, 2014.

    Article  Google Scholar 

  25. Imam, Z. I., L. E. Kenyon, A. Carrillo, I. Espinoza, F. Nagib, and J. C. Stachowiak. Steric pressure among membrane-bound polymers opposes lipid phase separation. Langmuir 32:3774–3784, 2016.

    Article  Google Scholar 

  26. Immordino, M. L., F. Dosio, and L. Cattel. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 1:297–315, 2006.

    Article  Google Scholar 

  27. Kim, S. K., M. B. Foote, and L. Huang. The targeted intracellular delivery of cytochrome C protein to tumors using lipid-apolipoprotein nanoparticles. Biomaterials 33:3959–3966, 2012.

    Article  Google Scholar 

  28. King, J. E., E. A. Eugenin, C. M. Buckner, and J. W. Berman. HIV tat and neurotoxicity. Microbes Infect. 8:1347–1357, 2006.

    Article  Google Scholar 

  29. Lechardeur, D., K. J. Sohn, M. Haardt, P. B. Joshi, M. Monck, R. W. Graham, B. Beatty, J. Squire, H. O’Brodovich, and G. L. Lukacs. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6:482–497, 1999.

    Article  Google Scholar 

  30. Lee, H., J. H. Jeong, and T. G. Park. PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J. Controll. Release 79:283–291, 2002.

    Article  Google Scholar 

  31. Li, W., A. Asokan, Z. Wu, T. Van Dyke, N. DiPrimio, J. S. Johnson, L. Govindaswamy, M. Agbandje-McKenna, S. Leichtle, D. E. Redmond, T. J. McCown, K. B. Petermann, N. E. Sharpless, and R. J. Samulski. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. 16:1252–1260, 2008.

    Article  Google Scholar 

  32. Li, S., and N. Malmstadt. Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft Matter 9:4969–4976, 2013.

    Article  Google Scholar 

  33. Mae, M., and U. Langel. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr. Opin. Pharmacol. 6:509–514, 2006.

    Article  Google Scholar 

  34. Mansourian, M., A. Badiee, S. A. Jalali, S. Shariat, M. Yazdani, M. Amin, and M. R. Jaafari. Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN. Immunol. Lett. 162:87–93, 2014.

    Article  Google Scholar 

  35. Mills, J. C., N. L. Stone, and R. N. Pittman. Extranuclear apoptosis: the role of the cytoplasm in the execution phase. J. Cell Biol. 146:703–707, 1999.

    Article  Google Scholar 

  36. Moghimi, S. M., P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 11:990–995, 2005.

    Article  Google Scholar 

  37. Momin, N., S. Lee, A. K. Gadok, D. J. Busch, G. D. Bachand, C. C. Hayden, J. C. Stachowiak, and D. Y. Sasaki. Designing lipids for selective partitioning into liquid ordered membrane domains. Soft Matter 11:3241–3250, 2015.

    Article  Google Scholar 

  38. Morille, M., C. Passirani, A. Vonarbourg, A. Clavreul, and J. P. Benoit. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496, 2008.

    Article  Google Scholar 

  39. Murthy, N., J. Campbell, N. Fausto, A. S. Hoffman, and P. S. Stayton. Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Controll. Release 89:365–374, 2003.

    Article  Google Scholar 

  40. Paluch, E., C. Sykes, J. Prost, and M. Bornens. Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol. 16:5–10, 2006.

    Article  Google Scholar 

  41. Parker, J. N., G. Y. Gillespie, C. E. Love, S. Randall, R. J. Whitley, and J. M. Markert. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc. Natl. Acad. Sci. USA 97:2208–2213, 2000.

    Article  Google Scholar 

  42. Pecheur, E. I., and D. Hoekstra. Peptide-induced fusion of liposomes. Methods Mol. Biol. 199:31–48, 2002.

    Google Scholar 

  43. Pires, P., S. Simoes, S. Nir, R. Gaspar, N. Duzgunes, and M. C. P. de Lima. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim. Biophys. Acta Biomembr. 1418:71–84, 1999.

    Article  Google Scholar 

  44. Rawle, R. J., B. van Lengerich, M. Chung, P. M. Bendix, and S. G. Boxer. Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys. J. 101:L37–L39, 2011.

    Article  Google Scholar 

  45. Regelin, A. E., S. Fankhaenel, L. Gurtesch, C. Prinz, G. von Kiedrowski, and U. Massing. Biophysical and lipofection studies of DOTAP analogs. Biochim. Biophys. Acta Biomembr. 1464:151–164, 2000.

    Article  Google Scholar 

  46. Rubinson, D. A., C. P. Dillon, A. V. Kwiatkowski, C. Sievers, L. L. Yang, J. Kopinja, M. D. Zhang, M. T. McManus, F. B. Gertler, M. L. Scott, and L. Van Parijs. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33:401–406, 2003.

    Article  Google Scholar 

  47. Sezgin, E., H. J. Kaiser, T. Baumgart, P. Schwille, K. Simons, and I. Levental. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc. 7:1042–1051, 2012.

    Article  Google Scholar 

  48. Skaug, M. J., M. L. Longo, and R. Faller. the impact of texas red on lipid bilayer properties. J. Phys. Chem. B 115:8500–8505, 2011.

    Article  Google Scholar 

  49. Sollner, T., S. W. Whitehart, M. Brunner, H. Erdjumentbromage, S. Geromanos, P. Tempst, and J. E. Rothman. Snap receptors implicated in vesicle targeting and fusion. Nature 362:318–324, 1993.

    Article  Google Scholar 

  50. Tu, C. Y., L. Santo, Y. Mishima, N. Raje, Z. Smilansky, and J. Zoldan. Monitoring protein synthesis in single live cancer cells. Integr. Biol. 8:645–653, 2016.

    Article  Google Scholar 

  51. van Dommelen, S. M., P. Vader, S. Lakhal, S. A. A. Kooijmans, W. W. van Solinge, M. J. A. Wood, and R. M. Schiffelers. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J. Controll. Release 161:635–644, 2012.

    Article  Google Scholar 

  52. Veatch, S. L., and S. L. Keller. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85:3074–3083, 2003.

    Article  Google Scholar 

  53. Veatch, S. L., and S. L. Keller. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta Mol. Cell Res. 1746:172–185, 2005.

    Article  Google Scholar 

  54. White, S. J., S. A. Nicklin, H. Buning, M. J. Brosnan, K. Leike, E. D. Papadakis, M. Hallek, and A. H. Baker. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109:513–519, 2004.

    Article  Google Scholar 

  55. Wieber, A., T. Selzer, and J. Kreuter. Physico-chemical characterisation of cationic DOTAP liposomes as drug delivery system for a hydrophilic decapeptide before and after freeze-drying. Eur. J. Pharm. Biopharm. 80:358–367, 2012.

    Article  Google Scholar 

  56. Xu, Y. H., S. W. Hui, P. Frederik, and F. C. Szoka. Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 77:341–353, 1999.

    Article  Google Scholar 

  57. Yamazaki, Y., M. Nango, M. Matsuura, Y. Hasegawa, M. Hasegawa, and N. Oku. Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther. 7:1148–1155, 2000.

    Article  Google Scholar 

  58. Yang, S. T., E. Zaitseva, L. V. Chernomordik, and K. Melikov. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys. J. 99:2525–2533, 2010.

    Article  Google Scholar 

  59. Young, L. S., P. F. Searle, D. Onion, and V. Mautner. Viral gene therapy strategies: from basic science to clinical application. J. Pathol. 208:299–318, 2006.

    Article  Google Scholar 

  60. Zhao, J., J. Wu, and S. L. Veatch. Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. Biophys. J. 104:825–834, 2013.

    Article  Google Scholar 

  61. Zhu, S. J., D. S. P. Lansakara-P, X. R. Li, and Z. R. Cui. Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjugate Chem. 23:966–980, 2012.

    Article  Google Scholar 

  62. Zhu, S. J., M. M. Niu, H. O’Mary, and Z. R. Cui. Targeting of tumor-associated macrophages made possible by peg-sheddable, mannose-modified nanoparticles. Mol. Pharm. 10:3525–3530, 2013.

    Article  Google Scholar 

  63. Zhu, S. J., P. Wonganan, D. S. P. Lansakara-P, H. L. O’Mary, Y. Li, and Z. R. Cui. The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials 34:2327–2339, 2013.

    Article  Google Scholar 

  64. Zimmerberg, J., and M. M. Kozlov. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7:9–19, 2006.

    Article  Google Scholar 

  65. Zuidam, N. J., and Y. Barenholz. Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin. Biochim. Biophys. Acta Biomembr. 1329:211–222, 1997.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation Division of Materials Research (DMR 1352487 to Stachowiak) and also National Institute of General Medical Science (Grant No. GM112065). We thank the BME Community of Undergraduate Research Scholars for Cancer (BME CUReS Cancer) an NSF sponsored Research Experience for Undergraduates (REU) at The University of Texas at Austin for enabling Grant Ashby to work in the Stachowiak Laboratory at UT Austin. We thank the laboratories of Professors Aaron Baker and Janet Zoldan for assistance with lentiviral transfection.

CONFLICT OF INTEREST

All authors, including Z. I. Imam, L. E Kenyon, G. Ashby, F. Nagib, M. Mendicino, C. Zhao, A. K. Gadok, and J. C. Stachowiak, declare that they have no conflict of interest.

ETHICAL APPROVAL

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne C. Stachowiak.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Jeanne C. Stachowiak, Ph.D Dr. Jeanne Stachowiak completed her undergraduate education in mechanical engineering at the University of Texas at Austin in 2002. She received a master’s degree in mechanical engineering from the University of California, Berkeley in 2004, under the supervision of Professor Arun Majumdar and a doctorate in mechanical engineering from the University of California, Berkeley in 2008 under the supervision of Professor Daniel Fletcher. From 2008 to 2011 Dr. Stachowiak served as a Senior Member of the Technical Staff at Sandia National Laboratories, where her independent research program explored basic biophysical questions and practical applications of lipid membrane materials and systems. Dr. Stachowiak has served as a tenure-track Assistant Professor in the Department of Biomedical Engineering at the University of Texas at Austin since January 2012. Through quantitative molecular-scale measurements and the design of biomimetic materials, research in her laboratory aims to understand the physical basis of cellular membrane organization and to design biologically-inspired materials and systems for biomedical applications.

This article is part of the 2017 CMBE Young Innovators special issue.

An erratum to this article is available at https://doi.org/10.1007/s12195-017-0491-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2517 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imam, Z.I., Kenyon, L.E., Ashby, G. et al. Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm. Cel. Mol. Bioeng. 10, 387–403 (2017). https://doi.org/10.1007/s12195-017-0489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0489-4

Keywords

Navigation