Skip to main content
Log in

Lipidoid Tail Structure Strongly Influences siRNA Delivery Activity

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

RNA interference therapeutics have been limited, in large part, by the lack of efficient, non-toxic, non-immunogenic delivery systems. Among previously established methods, lipidoid nanoparticles (LNPs) show particular promise in delivering siRNA to diverse cell and organ targets in vitro and in vivo. However, a better understanding of structure–function relationships is needed to facilitate broad translation to clinical applications. Here, we demonstrate the critical role of tail chemistry in conferring delivery efficacy to lipidoid molecules with three or four aliphatic tails. Tail length and structure significantly affected siRNA transfection in HeLa cells, with methacrylate (vs. acrylate) tails and tails containing ethers causing reductions in efficacy. Notably, we report a novel tail precursor, isodecyl acrylate, that conveyed marked siRNA delivery ability in vitro and in vivo. LNPs with isodecyl acrylate lipidoids uniformly induced greater than 90% gene silencing, both in vitro and in mice (hepatocytes), at 40 nM and 0.1 mg/kg, respectively. Furthermore, we found that tail chemistry significantly influenced the surface pKa values of formulated LNPs, with tails that conferred higher pKa facilitating higher levels of gene knockdown. Together, these data underscore the importance of lipidoid tail structure and provide guidance for the development of next generation lipid nanoparticle siRNA delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akinc, A., W. Querbes, S. De, J. Qin, M. Frank-Kamenetsky, K. N. Jayaprakash, M. Jayaraman, K. G. Rajeev, W. L. Cantley, J. R. Dorkin, J. S. Butler, L. Qin, T. Racie, A. Sprague, E. Fava, A. Zeigerer, M. J. Hope, M. Zerial, D. W. Sah, K. Fitzgerald, M. A. Tracy, M. Manoharan, V. Koteliansky, A. de Fougerolles, and M. A. Maier. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18:1357–1364, 2010.

    Article  Google Scholar 

  2. Akinc, A., A. Zumbuehl, M. Goldberg, E. S. Leshchiner, V. Busini, N. Hossain, S. A. Bacallado, D. N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland, R. Constien, A. De Fougerolles, J. R. Dorkin, K. Narayanannair Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L. Nechev, J. Qin, T. Racie, D. Raitcheva, K. G. Rajeev, D. W. Y. Sah, J. Soutschek, I. Toudjarska, H. Vornlocher, T. S. Zimmermann, R. Langer, and D. G. Anderson. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26:561–569, 2008.

    Article  Google Scholar 

  3. Alabi, C. A., K. T. Love, G. Sahay, H. Yin, K. M. Luly, R. Langer, and D. G. Anderson. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl. Acad. Sci. 110:12881–12886, 2013.

    Article  Google Scholar 

  4. Ameres, S. L., J. Martinez, and R. Schroeder. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112, 2007.

    Article  Google Scholar 

  5. Chen, C.-K., W.-C. Law, R. Aalinkeel, B. Nair, A. Kopwitthaya, S. D. Mahajan, J. L. Reynolds, J. Zou, S. A. Schwartz, P. N. Prasad, and C. Cheng. Well-defined degradable cationic polylactide as nanocarrier for the delivery of siRNA to silence angiogenesis in prostate cancer. Adv. Healthc. Mater. 1:751–761, 2012.

    Article  Google Scholar 

  6. Dong, Y., K. T. Love, J. R. Dorkin, S. Sirirungruang, Y. Zhang, D. Chen, R. L. Bogorad, H. Yin, Y. Chen, A. J. Vegas, C. A. Alabi, G. Sahay, K. T. Olejnik, W. Wang, A. Schroeder, A. K. R. Lytton-Jean, D. J. Siegwart, A. Akinc, C. Barnes, S. A. Barros, M. Carioto, K. Fitzgerald, J. Hettinger, V. Kumar, T. I. Novobrantseva, J. Qin, W. Querbes, V. Koteliansky, R. Langer, and D. G. Anderson. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl. Acad. Sci. 111:3955–3960, 2014.

    Article  Google Scholar 

  7. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811, 1998.

    Article  Google Scholar 

  8. Fitzgerald, K., M. Frank-Kamenetsky, S. Shulga-Morskaya, A. Liebow, B. R. Bettencourt, J. E. Sutherland, R. M. Hutabarat, V. A. Clausen, V. Karsten, J. Cehelsky, S. V. Nochur, V. Kotelianski, J. Horton, T. Mant, J. Chiesa, J. Ritter, M. Munisamy, A. K. Vaishnaw, J. A. Gollob, and A. Simon. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383:60–68, 2014.

    Article  Google Scholar 

  9. Frank-Kamenetsky, M., A. Grefhorst, N. N. Anderson, T. S. Racie, B. Bramlage, A. Akinc, D. Butler, K. Charisse, R. Dorkin, Y. Fan, C. Gamba-Vitalo, P. Hadwiger, M. Jayaraman, M. John, K. N. Jayaprakash, M. Maier, L. Nechev, K. G. Rajeev, T. Read, I. Röhl, J. Soutschek, P. Tan, J. Wong, G. Wang, T. Zimmermann, A. de Fougerolles, H.-P. Vornlocher, R. Langer, D. G. Anderson, M. Manoharan, V. Koteliansky, J. D. Horton, and K. Fitzgerald. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. 105:11915–11920, 2008.

    Article  Google Scholar 

  10. Gilleron, J., W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, K. Manygoats, S. Seifert, C. Andree, M. Stöter, H. Epstein-Barash, L. Zhang, V. Koteliansky, K. Fitzgerald, E. Fava, M. Bickle, Y. Kalaidzidis, A. Akinc, M. Maier, and M. Zerial. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31:638–646, 2013.

    Article  Google Scholar 

  11. Heyes, J., L. Palmer, K. Bremner, and I. MacLachlan. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release 107:276–287, 2005.

    Article  Google Scholar 

  12. Jayaraman, M., S. M. Ansell, B. L. Mui, Y. K. Tam, J. Chen, X. Du, D. Butler, L. Eltepu, S. Matsuda, J. K. Narayanannair, K. G. Rajeev, I. M. Hafez, A. Akinc, M. A. Maier, M. A. Tracy, P. R. Cullis, T. D. Madden, M. Manoharan, and M. J. Hope. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51:8529–8533, 2012.

    Article  Google Scholar 

  13. Kumar, V., J. Qin, Y. Jiang, R. G. Duncan, B. Brigham, S. Fishman, J. K. Nair, A. Akinc, S. A. Barros, and P. V. Kasperkovitz. Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucl. Acids 3:e210, 2014.

    Article  Google Scholar 

  14. Love, K. T., K. P. Mahon, C. G. Levins, K. A. Whitehead, W. Querbes, J. R. Dorkin, J. Qin, W. Cantley, L. L. Qin, T. Racie, M. Frank-Kamenetsky, K. N. Yip, R. Alvarez, D. W. Y. Sah, A. de Fougerolles, K. Fitzgerald, V. Koteliansky, A. Akinc, R. Langer, and D. G. Anderson. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl. Acad. Sci. 107:1864–1869, 2010.

    Article  Google Scholar 

  15. Mahon, K. P., K. T. Love, K. A. Whitehead, J. Qin, A. Akinc, E. Leshchiner, I. Leshchiner, R. Langer, and D. G. Anderson. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery. Bioconjugate Chem. 21:1448–1454, 2010.

    Article  Google Scholar 

  16. Rand, T. A., S. Petersen, F. Du, and X. Wang. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629, 2005.

    Article  Google Scholar 

  17. Sahay, G., W. Querbes, C. Alabi, A. Eltoukhy, S. Sarkar, C. Zurenko, E. Karagiannis, K. Love, D. Chen, R. Zoncu, Y. Buganim, A. Schroeder, R. Langer, and D. G. Anderson. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31:653–658, 2013.

    Article  Google Scholar 

  18. Sehgal, A., S. Barros, L. Ivanciu, B. Cooley, J. Qin, T. Racie, J. Hettinger, M. Carioto, Y. Jiang, J. Brodsky, H. Prabhala, X. Zhang, H. Attarwala, R. Hutabarat, D. Foster, S. Milstein, K. Charisse, S. Kuchimanchi, M. A. Maier, L. Nechev, P. Kandasamy, A. V. Kel’in, J. K. Nair, K. G. Rajeev, M. Manoharan, R. Meyers, B. Sorensen, A. R. Simon, Y. Dargaud, C. Negrier, R. M. Camire, and A. Akinc. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat. Med. 21:492–497, 2015.

    Article  Google Scholar 

  19. Semple, S. C., A. Akinc, J. Chen, A. P. Sandhu, B. L. Mui, C. K. Cho, D. W. Y. Sah, D. Stebbing, E. J. Crosley, E. Yaworski, I. M. Hafez, J. R. Dorkin, J. Qin, K. Lam, K. G. Rajeev, K. F. Wong, L. B. Jeffs, L. Nechev, M. L. Eisenhardt, M. Jayaraman, M. Kazem, M. A. Maier, M. Srinivasulu, M. J. Weinstein, Q. Chen, R. Alvarez, S. A. Barros, S. De, S. K. Klimuk, T. Borland, V. Kosovrasti, W. L. Cantley, Y. K. Tam, M. Manoharan, M. A. Ciufolini, M. A. Tracy, A. de Fougerolles, I. MacLachlan, P. R. Cullis, T. D. Madden, and M. J. Hope. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28:172–176, 2010.

    Article  Google Scholar 

  20. Wang, M., S. Sun, K. A. Alberti, and Q. Xu. A combinatorial library of unsaturated lipidoids for efficient intracellular gene delivery. ACS Synth. Biol. 1:403–407, 2012.

    Article  Google Scholar 

  21. Whitehead, K.A., J.R. Dorkin, A.J. Vegas, P.H. Chang, O. Veiseh, J. Matthews, O.S. Fenton, Y. Zhang, K.T. Olejnik, V. Yesilyurt, D. Chen, S. Barros, B. Klebanov, T. Novobrantseva, R. Langer, and D.G. Anderson. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 2014 [cited 2014 Oct 7]. Available from: http://www.nature.com/ncomms/2014/140627/ncomms5277/full/ncomms5277.html.

  22. Whitehead, K. A., R. Langer, and D. G. Anderson. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8:129–138, 2009.

    Article  Google Scholar 

  23. Whitehead, K. A., J. Matthews, P. H. Chang, F. Niroui, J. R. Dorkin, M. Severgnini, and D. G. Anderson. In vitro–in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery. ACS Nano 6:6922–6929, 2012.

    Article  Google Scholar 

  24. Wisse, E., F. Jacobs, B. Topal, P. Frederik, and B. De Geest. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 15:1193–1199, 2008.

    Article  Google Scholar 

  25. Wittrup, A., A. Ai, X. Liu, P. Hamar, R. Trifonova, K. Charisse, M. Manoharan, T. Kirchhausen, and J. Lieberman. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33:870–876, 2015.

    Article  Google Scholar 

  26. Wooddell, C. I., D. B. Rozema, M. Hossbach, M. John, H. L. Hamilton, Q. Chu, J. O. Hegge, J. J. Klein, D. H. Wakefield, C. E. Oropeza, J. Deckert, I. Roehl, K. Jahn-Hofmann, P. Hadwiger, H.-P. Vornlocher, A. McLachlan, and D. L. Lewis. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 21:973–985, 2013.

    Article  Google Scholar 

  27. Yameen, B., W. I. Choi, C. Vilos, A. Swami, J. Shi, and O. C. Farokhzad. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190:485–499, 2014.

    Article  Google Scholar 

  28. Yu, B., S.-H. Hsu, C. Zhou, X. Wang, M. C. Terp, Y. Wu, L. Teng, Y. Mao, F. Wang, W. Xue, S. T. Jacob, K. Ghoshal, R. J. Lee, and L. J. Lee. Lipid nanoparticles for hepatic delivery of small interfering RNA. Biomaterials 33:5924–5934, 2012.

    Article  Google Scholar 

  29. Zhou, K., L. H. Nguyen, J. B. Miller, Y. Yan, P. Kos, H. Xiong, L. Li, J. Hao, J. T. Minnig, H. Zhu, and D. J. Siegwart. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl. Acad. Sci. 113:520–525, 2016.

    Article  Google Scholar 

  30. Zuckerman, J. E., and M. E. Davis. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14:843–856, 2015.

    Article  Google Scholar 

Download references

Conflict of interest

Christopher M. Knapp, Penghong Guo, and Kathryn A. Whitehead declare that they have no conflicts of interest.

Funding

Funding was provided by Carnegie Mellon University and the DSF Charitable Foundation.

Research Involved in Human and Animal Rights

No human studies were carried out by the authors for this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the Carnegie Mellon University Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn A. Whitehead.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Prof. Kathryn A. Whitehead is an Assistant Professor in the Department of Chemical Engineering at Carnegie Mellon University, with a courtesy appointment in the Department of Biomedical Engineering. Her lab’s research interests include the chemical and biophysical analysis of biomaterials as well as their use in delivering biologic drugs to diseased tissue. Prof. Whitehead obtained a B.Ch.E. from the Univ. of Delaware (2002), a Ph.D. from UC Santa Barbara (2007), and served as a postdoctoral fellow at MIT from 2008–2012. She is the recipient of numerous awards, including an NIH NRSA postdoctoral fellowship and the Kun Li Award for Excellence in Education. Prof. Whitehead was named as a Pioneer on the MIT Technology Review’s Innovators Under 35 list in 2014 as well as one of the Brilliant Ten by Popular Science in 2015. Several of her patents have been licensed and are currently being developed for reagent and therapeutic use.

figure a

This article is part of the 2016 Young Innovators Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knapp, C.M., Guo, P. & Whitehead, K.A. Lipidoid Tail Structure Strongly Influences siRNA Delivery Activity. Cel. Mol. Bioeng. 9, 305–314 (2016). https://doi.org/10.1007/s12195-016-0436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0436-9

Keywords

Navigation