Skip to main content
Log in

A Case for the Nuclear Membrane as a Mechanotransducer

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The cell nucleus is becoming increasingly recognized as a mechanosensitive organelle. Most research on nuclear mechanosignaling focuses on the nuclear lamina and coupled actin structures. In this commentary, we discuss the possibility that the nuclear membrane senses and transduces mechanical signals similar to the plasma membrane. We briefly summarize possible (i) pathophysiological sources of nuclear membrane tension, (ii) features that render nuclear membranes particularly suited for mechanotransduction, and (iii) molecular sensing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Alam, S., D. B. Lovett, R. B. Dickinson, K. J. Roux, and T.P. Lele. Nuclear forces and cell mechanosensing. 1st ed. Prog. Mol. Biol. Transl. Sci. http://dx.doi.org/10.1016/B978-0-12-394624-9.00008-7, 2014.

  2. Bazán, N. G. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10, 1970.

    Article  Google Scholar 

  3. Berghe, T. V., A. Linkermann, S. Jouan-Lanhouet, H. Walczak, and P. Vandenabeele. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15:135–147. http://www.nature.com/doifinder/10.1038/nrm3737, 2014.

  4. Bigay, J., and B. Antonny. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23:886–895, 2012.

    Article  Google Scholar 

  5. Boguslavsky, V., M. Rebecchi, A. J. Morris, D. Y. Jhon, S. G. Rhee, and S. McLaughlin. Effect of monolayer surface pressure on the activities of phosphoinositide-specific phospholipase C-beta 1, -gamma 1, and -delta 1. Biochemistry 33:3032–3037. http://www.ncbi.nlm.nih.gov/pubmed/8130216, 1994.

  6. Dahl, K. N., S. M. Kahn, K. L. Wilson, and D. E. Discher. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117:4779–86. http://www.ncbi.nlm.nih.gov/pubmed/15331638, 2004.

  7. Davidson, P. M., J. Sliz, P. Isermann, C. Denais, and J. Lammerding. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. (Camb). 7:1534–1546. http://www.ncbi.nlm.nih.gov/pubmed/26549481, 2015.

  8. Diz-Muñoz, A., D. a Fletcher, and O. D. Weiner. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol. 23:47–53. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3558607&tool=pmcentrez&rendertype=abstract, 2013.

  9. Dodes Traian, M. M., F. L. González Flecha, and V. Levi. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J. Lipid Res. 53:609–616, 2012.

    Article  Google Scholar 

  10. Enyedi, B., S. Kala, T. Nikolich-Zugich, and P. Niethammer. Tissue damage detection by osmotic surveillance. Nat. Cell Biol. http://www.ncbi.nlm.nih.gov/pubmed/23934216, 2013.

  11. Enyedi, B., and P. Niethammer. Mechanisms of epithelial wound detection. Trends Cell Biol. 25:398–407, 2015.

    Article  Google Scholar 

  12. Fedorchak, G. R., A. Kaminski, and J. Lammerding. Cellular mechanosensing: getting to the nucleus of it all. Prog. Biophys. Mol. Biol. http://linkinghub.elsevier.com/retrieve/pii/S0079610714000510, 2014.

  13. Fidorra, J., T. Mielke, J. Booz, and L. E. Feinendegen. Cellular and nuclear volume of human cells during the cell cycle. Radiat. Environ. Biophys. 19:205–214, 1981.

    Article  Google Scholar 

  14. Finan, J. D., and F. Guilak. The effects of osmotic stress on the structure and function of the cell nucleus. J. Cell. Biochem. 109:460–467. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3616882&tool=pmcentrez&rendertype=abstract, 2010.

  15. Finan, J. D., K.J. Chalut, A. Wax, and F. Guilak. Nonlinear osmotic properties of the cell nucleus. Ann. Biomed. Eng. 37:477–491. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2749482&tool=pmcentrez&rendertype=abstract, 2009.

  16. Friedl, P., K. Wolf, and J. Lammerding. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23:55–64. http://linkinghub.elsevier.com/retrieve/pii/S0955067410001869, 2011.

  17. Gault, W. J., B. Enyedi, and P. Niethammer. Osmotic surveillance mediates rapid wound closure through nucleotide release. J. Cell Biol. 207:767–782, 2014.

    Article  Google Scholar 

  18. Gauthier, N. C., M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz. Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc. Natl. Acad. Sci. USA 108:14467–14472, 2011.

    Article  Google Scholar 

  19. Gauthier, N. C., T. A. Masters, and M. P. Sheetz. Mechanical feedback between membrane tension and dynamics. Trends Cell Biol. 22:527–535, 2012.

    Article  Google Scholar 

  20. Guilluy, C., and K. Burridge. Nuclear mechanotransduction: forcing the nucleus to respond. Nucleus 6:19–22, 2015.

    Article  Google Scholar 

  21. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–381. http://www.ncbi.nlm.nih.gov/pubmed/24609268, 2014.

  22. Hamill, O. P., and B. Martinac. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81:685–740, 2001.

    Google Scholar 

  23. Hategan, A., R. Law, S. Kahn, and D. E. Discher. Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing. Biophys. 85:2746–2759. http://dx.doi.org/10.1016/S0006-3495(03)74697-9, 2003.

  24. Irianto, J. et al. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys. J. Biophys. Soc. 104:759–769. http://dx.doi.org/10.1016/j.bpj.2013.01.006, 2013.

  25. Itano, N., S. Okamoto, D. Zhang, S. A Lipton, and E. Ruoslahti. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl. Acad. Sci. USA. 100:5181–5186. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=154319&tool=pmcentrez&rendertype=abstract, 2003.

  26. Janmey, P. A., and P. K. J. Kinnunen. Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 16:538–546, 2006.

    Article  Google Scholar 

  27. Lammerding, J., K. N. Dahl, D. E. Discher, and R. D. Kamm. Nuclear mechanics and methods. Methods Cell Biol. 83:269–294. http://www.ncbi.nlm.nih.gov/pubmed/17613312, 2007.

  28. Lehtonen, J. Y., and P. K. Kinnunen. Phospholipase A2 as a mechanosensor. Biophys. J. 68:1888–1894. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1282092&tool=pmcentrez&rendertype=abstract, 1995.

  29. Liang, D., S. Bhatta, V. Gerzanich, and J. M. Simard. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg. Focus 22:E2. http://www.ncbi.nlm.nih.gov/pubmed/1761323, 2007.

  30. Majno, G., and I. Joris. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146:3–15. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1870771&tool=pmcentrez&rendertype=abstract, 1995.

  31. Niethammer, P. Healed by our inner fish? Oncotarget 6:15732–15733, 2015.

    Article  Google Scholar 

  32. Osmanagic-myers, S., T. Dechat, and R. Foisner. Lamins at the crossroads of mechanosignaling. Genes Dev. 29:225–237, 2015.

    Article  Google Scholar 

  33. Peters-Golden, M., and T. G. Brock. Intracellular compartmentalization of leukotriene synthesis: unexpected nuclear secrets. FEBS Lett. 487:323–326, 2001.

    Article  Google Scholar 

  34. Prat, A. G., and H. F. Cantiello. Nuclear ion channel activity is regulated by actin filaments. Am. J. Physiol. 270:C1532–C1543, 1996.

    Google Scholar 

  35. Prescott, D. M. Relation between cell growth and cell division. III. Changes in nuclear volume and growth rate and prevention of cell division in Amoeba proteus resulting from cytoplasmic amputations. Exp. Cell Res. 11:94–98, 1956.

    Article  Google Scholar 

  36. Raffy, S., and J. Teissié. Control of lipid membrane stability by cholesterol content. Biophys. J. 76:2072–2080, 1999.

    Article  Google Scholar 

  37. Redondo-Morata, L., M. I. Giannotti, and F. Sanz. Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Langmuir 28:12851–12860, 2012.

    Article  Google Scholar 

  38. Roca-Cusachs, P., J. Alcaraz, R. Sunyer, J. Samitier, R. Farré, and D. Navajas. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–4995, 2008.

    Article  Google Scholar 

  39. Sezgin, E., T. Sadowski, and K. Simons. Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir 30:8160–8166, 2014.

    Article  Google Scholar 

  40. Souvignet, C., J. M. Pelosin, S. Daniel, E. M. Chambaz, S. Ransac, and R. Verger. Activation of protein kinase C in lipid monolayers. J. Biol. Chem. 266:40–44, 1991.

    Google Scholar 

  41. von Moltke, J. et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:107–111. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3465483&tool=pmcentrez&rendertype=abstract, 2012.

  42. Zhang, Y.-L., J. A. Frangos, and M. Chachisvilis. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane. Biochem. Biophys. Res. Commun. 347:838–841, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kris Noel Dahl for helpful discussions. The authors are supported by the National Institutes of Health Grant GM099970 to P.N.

Conflict of interest

Balázs Enyedi and Philipp Niethammer declare that they have no conflicts of interest.

Ethical standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niethammer.

Additional information

Associate Editor G.W. Gant Luxton oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enyedi, B., Niethammer, P. A Case for the Nuclear Membrane as a Mechanotransducer. Cel. Mol. Bioeng. 9, 247–251 (2016). https://doi.org/10.1007/s12195-016-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0430-2

Keywords

Navigation