Skip to main content
Log in

The Effect of RGD Peptide on 2D and Miniaturized 3D Culture of HEPM Cells, MSCs, and ADSCs with Alginate Hydrogel

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Advancements in tissue engineering require the development of new technologies to study cell behavior in vitro. This study focuses on stem cell behavior within various miniaturized three-dimensional (3D) culture conditions of alginate biomaterials modified with the Arg-Gly-Asp (RGD) peptide known for its role in cell adhesion/attachment. Human embryonic palatal mesenchyme (HEPM) cells, bone marrow derived mesenchymal stem cells (MSCs), and human adipose derived stem cells (ADSCs) were cultured on a flat hydrogel of different concentrations of alginate-RGD, and in the miniaturized 3D core of microcapsules with either a 2% alginate or 2% alginate-RGD shell. The core was made of 0, 0.5, or 2% alginate-RGD. Cell spreading was observed in all systems containing the RGD peptide, and the cell morphology was quantified by measuring the cell surface area and circularity. For all types of stem cells, there was a significant increase in the cell surface area (p < 0.05) and a significant decrease in cell circularity (p < 0.01) in alginate-RGD conditions, indicating that cells spread much more readily in environments containing the peptide. This control over the cell spreading within a 3D microenvironment can help to create the ideal biomimetic condition for conducting further studies on cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agarwal, P., J. K. Choi, H. Huang, S. Zhao, J. Dumbleton, J. Li, and X. He. A biomimetic core-shell platform for miniaturized 3d cell and tissue engineering. Part. Part. Syst. Charact. 32:809–816, 2015.

    Article  Google Scholar 

  2. Agarwal, P., S. Zhao, P. Bielecki, W. Rao, J. K. Choi, Y. Zhao, J. Yu, W. Zhang, and X. He. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3d culture of pluripotent stem cells. Lab Chip 13:4525–4533, 2013.

    Article  Google Scholar 

  3. Alsberg, E., K. W. Anderson, A. Albeiruti, R. T. Franceschi, and D. J. Mooney. Cell interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80:2025–2029, 2001.

    Article  Google Scholar 

  4. Alsberg, E., K. W. Anderson, A. Albeiruti, J. A. Rowley, and D. J. Mooney. Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99:12025–12030, 2002.

    Article  Google Scholar 

  5. Alsberg, E., H. J. Kong, Y. Hirano, M. K. Smith, A. Albeiruti, and D. J. Mooney. Regulating bone formation via controlled scaffold degradation. J. Dent. Res. 82:903–908, 2003.

    Article  Google Scholar 

  6. Augst, A. D., H. K. Kong, and D. J. Mooney. Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633, 2006.

    Article  Google Scholar 

  7. Barkhordarian, A., J. Sison, R. Cayabyab, N. Mahanian, and F. Chiappelli. Epigenetic regulation of osteogenesis: human embryonic palatal mesencymal cells. Bioinformation 5:278–281, 2011.

    Article  Google Scholar 

  8. Chayosumrit, M., B. Tuch, and K. Sidhu. Alginate microcapsule for propagation and directed differentiation of hescs to definitive endoderm. Biomaterials 31:505–514, 2010.

    Article  Google Scholar 

  9. Choi, J. K., P. Agarwal, H. Huang, S. Zhao, and X. He. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials 35:5122–5128, 2014.

    Article  Google Scholar 

  10. Comisar, W. A., N. H. Kazmers, D. J. Mooney, and J. J. Linderman. Engineering Rgd nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 28:4409–4417, 2007.

    Article  Google Scholar 

  11. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712, 2001.

    Article  Google Scholar 

  12. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Article  Google Scholar 

  13. Fluri, D. A., P. D. Tonge, H. Song, R. P. Baptista, N. Shakiba, S. Shukla, G. Clarke, A. Nagy, and P. W. Zandstra. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat. Methods 9:509–516, 2012.

    Article  Google Scholar 

  14. Genes, N. G., J. A. Rowley, D. J. Mooney, and L. J. Bonassar. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys. 422:161–167, 2004.

    Article  Google Scholar 

  15. Griffith, L. G., and M. A. Swartz. Capturing complex 3d tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.

    Article  Google Scholar 

  16. Harper, B. A., S. Barbut, L. T. Lim, and M. F. Marcone. Effect of various gelling cations on the physical properties of “wet” alginate films. J. Food Sci. 79:e562–e567, 2014.

    Article  Google Scholar 

  17. Hsiong, S. X., T. Boontheekul, N. Huebsch, and D. J. Mooney. Cyclic arginine-glycine-aspartate peptides enhance three-dimensional stem cell osteogenic differentiation. Tissue Eng. Part A 15:263–272, 2009.

    Article  Google Scholar 

  18. Huang, H., and X. He. Interfacial tension based on-chip extraction of microparticles confined in microfluidic stokes flows. Appl. Phys. Lett. 105:143704, 2014.

    Article  Google Scholar 

  19. Huang, H., and X. He. Fluid displacement during droplet formation at microfluidic flow-focusing junction. Lab Chip 15:4197–4205, 2015.

    Article  Google Scholar 

  20. Huang, K. S., K. Lu, C. S. Yeh, S. R. Chung, C. H. Lin, and Y. S. Dong. Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Controlled Release 137:15–19, 2009.

    Article  Google Scholar 

  21. Huang, H., M. Sun, T. Heisler-Taylor, A. Kiourti, J. Volakis, G. Lafyatis, and X. He. Stiffness-independent highly efficient on-chip extraction of cell-laden hydrogel microcapsules from oil emulsion into aqueous solution by dielectrophoresis. Small 11:5369–5374, 2015.

    Article  Google Scholar 

  22. Jeon, O., and E. Alsberg. Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells. Tissue Eng. Part A 19:1424–1432, 2013.

    Article  Google Scholar 

  23. Jeon, O., and E. Alsberg. Regulation of stem cell fate in a three-dimensional micropatterned dual-crosslinked hydrogel system. Adv. Func. Mater. 23:4765–4775, 2013.

    Google Scholar 

  24. Jeon, O., D. S. Alt, S. W. Linderman, and E. Alsberg. Biochemical and physical signal gradients in hydrogels to control stem cell behavior. Adv Mater 25:6366–6372, 2013.

    Article  Google Scholar 

  25. Jeon, O., C. Powell, S. M. Ahmed, S. M. Ahmed, and E. Alsberg. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity. Tissue Eng. Part A 16:2915–2925, 2010.

    Article  Google Scholar 

  26. Kang, S. W., B. H. Cha, H. Park, K. S. Park, K. Y. Lee, and S. H. Lee. The effect of conjugating Rgd into 3d alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells. Macromol. Biosci. 11:673–679, 2011.

    Article  Google Scholar 

  27. Langer, R., and J. P. Vacanti. Tissue Engineering. Science 260:920–926, 1993.

    Article  Google Scholar 

  28. Lee, K. Y., E. Alsberg, S. Hsiong, W. Comisar, J. Linderman, R. Ziff, and D. J. Mooney. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett. 4:1501–1506, 2004.

    Article  Google Scholar 

  29. Lee, K. Y., and D. J. Mooney. Properties and biomedical applications. Prog. Polym. Sci. 37:106–126, 2012.

    Article  Google Scholar 

  30. Liu, H., J. Lin, and K. Roy. Effect of 3d scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27:5878–5889, 2006.

    Google Scholar 

  31. Ma, M., A. Chiu, G. Sahay, J. C. Doloff, N. Dholakia, R. Thakrar, J. Cohen, A. Vegas, D. Chen, K. M. Bratlie, T. Dang, R. L. York, J. Hollister-Lock, G. C. Weir, and D. G. Anderson. Core-shell hydrogel microcapsules for improved islets encapsulation. Adv. Healtchare Mater. 2:667–672, 2013.

    Article  Google Scholar 

  32. Maguire, T., E. Novik, R. Schloss, and M. Yarmush. Alginate-Pll microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol. Bioeng. 93:581–591, 2006.

    Article  Google Scholar 

  33. Ouwerx, C., N. Velings, M. M. Mestdagh, and M. A. V. Axelos. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Poly Gels Netw 6:393–408, 1998.

    Article  Google Scholar 

  34. Overhauser, J. Encapsulation of cells in agarose beads. Methods Mol. Biol. 12:129–134, 1992.

    Google Scholar 

  35. Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic materials. Biomaterials 20:45–53, 1999.

    Article  Google Scholar 

  36. Sakai, S., I. Hashimoto, and K. Kawakami. Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse es cells enclosed within these microcapsules. Biotechnol. Bioeng. 99:235–243, 2008.

    Article  Google Scholar 

  37. Sakai, S., S. Ito, S. Ito, and K. Kawakami. Calcium alginate microcapsules with spherical liquid cores templated by gelatin microparticles for mass production of multicellular spheroids. Acta Biomater. 6:3132–3137, 2010.

    Article  Google Scholar 

  38. Samorezov, J. E., C. M. Morlock, and E. Alsberg. Dual ionic and photo-crosslinked alginate hydrogels for micropatterned spatial control of material properties and cell behavior. Bioconj. Chem. 26:1339–1347, 2015.

    Article  Google Scholar 

  39. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441:1075–1079, 2006.

    Article  Google Scholar 

  40. Schneider, G. B., R. Zaharias, D. Seabold, J. Keller, and C. Stanford. Differentiation of preosteoblasts is affected by implant surface microtopographies. J. Biomed. Mater. Res. A 69:462–468, 2004.

    Article  Google Scholar 

  41. Serra, M., C. Correia, R. Malpique, C. Brito, J. Jensen, P. Bjorquist, M. J. Carrondo, and P. M. Alves. Microencapsulation technology: a power tool for integrating expansions and cryopreservation of human embryonic stem cells. PLoS ONE 6:e23212, 2011.

    Article  Google Scholar 

  42. Shu, X. Z., K. Ghosh, Y. Liu, F. Palumbo, Y. Luo, R. Clark, and G. Prestwich. Attachment and spreading of fibroblasts on an Rgd peptide-modified injectable hyaluronan hydrogel. J. Biomed. Res. A 68:365–375, 2004.

    Article  Google Scholar 

  43. Simmons, C. A., E. Alsberg, S. Hsiong, W. J. Kim, and D. J. Mooney. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35:562–569, 2004.

    Article  Google Scholar 

  44. Velasco, D., E. Tumarkin, and E. Kumacheva. Microfluidic encapsulation of cells in polymer microgels. Small 8:1633–1642, 2012.

    Article  Google Scholar 

  45. Wang, X., W. Wang, J. Ma, X. Guo, X. Yu, and X. Ma. Proliferation and differentiation of mouse embryonic stem cells in Apa microcapsule: a model for studying the interaction between stem cells and their niche. Biotechnol. Prog. 22:791–800, 2006.

    Article  Google Scholar 

  46. Watt, F. M., and B. L. Hogan. Out of Eden: stem cells and their niches. Science 287:1427–1430, 2000.

    Article  Google Scholar 

  47. Wilson, J. L., and T. C. McDevitt. Stem cell microencapusulation for phenotypic control, bioprocessing, and transplantation. Biotechnol. Bioeng. 110:667–682, 2013.

    Article  Google Scholar 

  48. Zhang, W., and X. He. Encapsulation of living cells in small (approximately 100 microm) alginate microcapsules by electrostatic spraying: a parametric study. J. Biomech. Eng. 131:074515, 2009.

    Article  Google Scholar 

  49. Zhang, W., and X. He. Microencapsulating and banking living cells for cell-based medicine. Healthcare Eng. 2:427–446, 2011.

    Article  Google Scholar 

  50. Zhang, W., G. Yang, A. Zhang, L. X. Xu, and X. He. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdev. 12:89–96, 2012.

    Article  Google Scholar 

  51. Zhang, W., S. Zhao, W. Rao, J. Snyder, J. K. Choi, J. Wang, I. A. Khan, N. B. Saleh, P. J. Mohler, J. Yu, T. J. Hund, C. Tang, and X. He. A novel core-shell microcapsule for encapsulation and 3d culture of embryonic stem cells. J. Mater. Chem. B Mater. Biol. Medl. 1:1002–1009, 2013.

    Article  Google Scholar 

  52. Zhao, S., P. Agarwal, W. Rao, H. Huang, R. Zhang, Z. Liu, J. Yu, N. Weisleder, W. Zhang, and X. He. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3d culture of pluripotent stem cells. Integr. Biol. 6:874–884, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from NSF (CBET-1033426) and NIH (R01EB012108). KJG was supported by grant (CMMI-1334757) from NSF. RZ was supported by grants (R01HL116546 and R01AR064241) from NIH. We would like to thank Dr. Lisa Hommel in The Ohio State University Surface Analysis Facility for her assistance in conducting and analyzing the XPS spectra and Anne Shim for her technical help.

Conflicts of interest

Jenna Dumbleton, Pranay Agarwal, Haishui Huang, Nathaniel Hogrebe, Renzhi Han, Keith J. Gooch, and Xiaoming He declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Associate Editor Joyce Wong oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumbleton, J., Agarwal, P., Huang, H. et al. The Effect of RGD Peptide on 2D and Miniaturized 3D Culture of HEPM Cells, MSCs, and ADSCs with Alginate Hydrogel. Cel. Mol. Bioeng. 9, 277–288 (2016). https://doi.org/10.1007/s12195-016-0428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0428-9

Keywords

Navigation