Skip to main content

Advertisement

Log in

Per-Residue Energy Footprints-Based Pharmacophore Modeling as an Enhanced In Silico Approach in Drug Discovery: A Case Study on the Identification of Novel β-Secretase1 (BACE1) Inhibitors as Anti-Alzheimer Agents

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

A further refinement to our previously published “target-bound pharmacophore modeling approach” is reported herein. Instead of relying on “random” pharmacophores—which is the most commonly used approach in literature—phrmacophoric “hot spots” were selected based on highly contributing amino acid residues to inhibitor binding. Highly contributing amino acid residues were identified based on energy footprints obtained from molecular dynamics and thermodynamic calculations. To our knowledge, this is the first attempt in the literature to use this approach. Previously, docking energy was used to create energy-based pharmacophores, however, docking scores, in many cases, are artifacts and questionable. Hence, we introduce the concept of per-residue energy decomposition footprints obtained from molecular dynamics ensembles in order to create more reliable pharmacophore modeling which can be implemented in drug discovery workflows. The purpose of this work is not to compare the validity of this approach against previously reported ones, but rather to introduce a more rational approach to the scientific domain. Further computational and experimental validations would be advised. Herein, we applied the developed protocol in order to identify novel BACE1 inhibitors and results were validated against experimentally determined inhibitors with known activity against BACE1. This protocol was found promising to identify hits with higher binding affinities when compared against experimentally determined inhibitors. Other post-dynamic binding analysis for the identified hits was also presented in this report as a roadmap towards the design of potential BACE1 inhibitors as anti-Alzheimer Agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Amaravadhi, H., K. Baek, and H. S. Yoon. Revisiting de novo drug design: receptor based pharmacophore screening. Curr. Top. Med. Chem. 14:1890–1898, 2014.

    Article  Google Scholar 

  2. Anand, R., K. D. Gill, and A. A. Mahdi. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50, 2014.

    Article  Google Scholar 

  3. Awale, M., X. Jin, and J. L. Reymond. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints. J. Cheminform. 7:3, 2015.

    Article  Google Scholar 

  4. Awale, M., and J. L. Reymond. A multi-fingerprint browser for the ZINC database. Nucleic Acids Res. 42:W234–W239, 2014.

    Article  Google Scholar 

  5. Batool, S., Z. A. Khan, W. Kamal, and M. A. Kamal. In silico screening for identification of novel anti-malarial inhibitors by molecular docking, pharmacophore modeling and virtual screening. Med. Chem. 11:687–700, 2015.

    Article  Google Scholar 

  6. Bhakat, S., S. Chetty, A. J. Martin, and M. E. Soliman. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights. J. Biomol. Struct. Dyn. 11:1–46, 2015.

    Google Scholar 

  7. Bhakat, S., A. J. M. Martin, and M. E. S. Soliman. An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. Mol. Biosyst. 10(8):2215–2228, 2014. doi:10.1039/c4mb00253a

    Article  Google Scholar 

  8. Bolognesi, M. L., R. Matera, A. Minarini, M. Rosini, and C. Melchiorre. Alzheimer’s disease: new approaches to drug discovery. Curr. Opin. Chem. Biol. 13:303–308, 2009.

    Article  Google Scholar 

  9. Bowers, S., Y.-Z. Xu, S. Yuan, G. D. Probst, R. K. Hom, W. Chan, A. W. Konradi, H. L. Sham, Y. L. Zhu, P. Beroza, H. Pan, E. Brecht, N. Yao, J. Lougheed, D. Tam, Z. Ren, L. Ruslim, M. P. Bova, and D. R. Artis. Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates. Bioorg. Med. Chem. Lett. 23:2181–2186, 2013.

    Article  Google Scholar 

  10. Braga, R. C., and C. H. Andrade. Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr. Top. Med. Chem. 13:1127–1138, 2013.

    Article  Google Scholar 

  11. B-Rao, C., A. Kulkarni-Almeida, K. V. Katkar, S. Khanna, U. Ghosh, A. Keche, P. Shah, A. Srivastava, V. Korde, K. V. S. Nemmani, N. J. Deshmukh, A. Dixit, M. K. Brahma, U. Bahirat, L. Doshi, R. Sharma, and H. Sivaramakrishnan. Identification of novel isocytosine derivatives as xanthine oxidase inhibitors from a set of virtual screening hits. Bioorg. Med. Chem. 20:2930–2939, 2012.

    Article  Google Scholar 

  12. Butini, S., E. Gabellieri, M. Brindisi, A. Casagni, E. Guarino, P. B. Huleatt, N. Relitti, V. La Pietra, L. Marinelli, M. Giustiniano, E. Novellino, G. Campiani, and S. Gemma. Novel peptidomimetics as BACE-1 inhibitors: synthesis, molecular modeling, and biological studies. Bioorg. Med. Chem. Lett. 23:85–89, 2013.

    Article  Google Scholar 

  13. Camps, P., X. Formosa, C. Galdeano, D. Munoz-Torrero, L. Ramirez, E. Gomez, N. Isambert, R. Lavilla, A. Badia, M. V. Clos, M. Bartolini, F. Mancini, V. Andrisano, M. P. Arce, M. I. Rodriguez-Franco, O. Huertas, T. Dafni, and F. J. Luque. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds. J. Med. Chem. 52:5365–5379, 2009.

    Article  Google Scholar 

  14. Chang, W. P., X. Huang, D. Downs, J. R. Cirrito, G. Koelsch, D. M. Holtzman, A. K. Ghosh, and J. Tang. Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J. 25:775–784, 2011.

    Article  Google Scholar 

  15. Chiriano, G., A. De Simone, F. Mancini, D. I. Perez, A. Cavalli, M. L. Bolognesi, G. Legname, A. Martinez, V. Andrisano, P. Carloni, and M. Roberti. A small chemical library of 2-aminoimidazole derivatives as BACE-1 inhibitors: structure-based design, synthesis, and biological evaluation. Eur. J. Med. Chem. 48:206–213, 2012.

    Article  Google Scholar 

  16. Christopeit, T., G. Stenberg, T. Gossas, S. Nyström, V. Baraznenok, E. Lindström, and U. H. Danielson. A surface plasmon resonance-based biosensor with full-length BACE1 in a reconstituted membrane. Anal. Biochem. 414:14–22, 2011.

    Article  Google Scholar 

  17. Csukly, G., E. Siraly, Z. Hidasi, P. Salacz, A. Szabo, and E. Csibri. Pharmacological and other options in preventing dementia: a literature review. Neuropsychopharmacol. Hung. 16:121–126, 2014.

    Google Scholar 

  18. Czech, C., and F. Grueninger. Animal models for Alzheimer’s disease—the industry perspective. Drug Discovery Today 10:e73–e78, 2013.

    Article  Google Scholar 

  19. Dessolin, J. N-(3-(2-amino-6,6-difluoro-4,4a,5,6,7,7a-hexahydro-cyclopenta[e][1,3]oxazin-4-yl) -phenyl)-amides as BACE1 inhibitors: a patent evaluation of WO2013041499. Expert Opin. Ther. Pat. 24:239–242, 2014.

    Article  Google Scholar 

  20. Dhanjal, J. K., S. Goyal, S. Sharma, R. Hamid, and A. Grover. Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer’s plaque pathology. Biochem. Biophys. Res. Commun. 443:1054–1059, 2014.

    Article  Google Scholar 

  21. Duan, X., M. Zhang, X. Zhang, F. Wang, and M. Lei. Molecular modeling and docking study on dopamine D2-like and serotonin 5-HT2A receptors. J. Mol. Graph. Model. 57:143–155, 2015.

    Article  Google Scholar 

  22. Fernandez-Bachiller, M. I., A. Horatscheck, M. Lisurek, and J. Rademann. Alzheimer’s disease: identification and development of beta-secretase (BACE-1) binding fragments and inhibitors by dynamic ligation screening (DLS). ChemMedChem 8:1041–1056, 2013.

    Article  Google Scholar 

  23. Ferreira, L. G., R. N. Dos Santos, G. Oliva, and A. D. Andricopulo. Molecular Docking and Structure-Based Drug Design Strategies. Molecules 20:13384–13421, 2015.

    Article  Google Scholar 

  24. Ghosh, A. K., S. Gemma, and J. Tang. β-Secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics 5:399–408, 2008.

    Article  Google Scholar 

  25. Ghosh, A. K., N. Kumaragurubaran, L. Hong, S. Kulkarni, X. Xu, H. B. Miller, D. Srinivasa Reddy, V. Weerasena, R. Turner, W. Chang, G. Koelsch, and J. Tang. Potent memapsin 2 (β-secretase) inhibitors: design, synthesis, protein-ligand X-ray structure, and in vivo evaluation. Bioorg. Med. Chem. Lett. 18:1031–1036, 2008.

    Article  Google Scholar 

  26. Halperin, I., B. Ma, H. Wolfson, and R. Nussinov. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443, 2002.

    Article  Google Scholar 

  27. Hanessian, S., Z. Shao, C. Betschart, J.-M. Rondeau, U. Neumann, and M. Tintelnot-Blomley. Structure-based design and synthesis of novel P2/P3 modified, non-peptidic β-secretase (BACE-1) inhibitors. Bioorg. Med. Chem. Lett. 20:1924–1927, 2010.

    Article  Google Scholar 

  28. Hossain, T., A. Mukherjee, and A. Saha. Chemometric design to explore pharmacophore features of BACE inhibitors for controlling Alzheimer’s disease. Mol. Biosyst. 11:549–557, 2015.

    Article  Google Scholar 

  29. Huang, D., Y. Liu, B. Shi, Y. Li, G. Wang, and G. Liang. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J. Mol. Graph. Model. 45:65–83, 2013.

    Article  Google Scholar 

  30. Huey, R., G. M. Morris, A. J. Olson, and D. S. Goodsell. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28:1145–1152, 2007.

    Article  Google Scholar 

  31. Jain, A. N. Virtual screening in lead discovery and optimization. Curr. Opin. Drug Discov. Devel. 7:396–403, 2004.

    Google Scholar 

  32. John, S., S. Thangapandian, S. Sakkiah, and K. W. Lee. Potent BACE-1 inhibitor design using pharmacophore modeling, in silico screening and molecular docking studies. BMC Bioinformatics 12(Suppl 1):S28, 2011.

    Article  Google Scholar 

  33. Kacker, P., G. Bottegoni, and A. Cavalli. Computational methods in the discovery and design of BACE-1 inhibitors. Curr. Med. Chem. 19:6095–6111, 2012.

    Article  Google Scholar 

  34. Karubiu, W., S. Bhakat, and M. S. Soliman. Compensatory role of double mutation N348I/M184V on nevirapine binding landscape: insight from molecular dynamics simulation. Protein J. 33:1–15, 2014.

    Article  Google Scholar 

  35. Kitchen, D. B., H. Decornez, J. R. Furr, and J. Bajorath. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Dis. 3:935–949, 2004.

    Article  Google Scholar 

  36. Kumalo, H. M., S. Bhakat, and M. E. Soliman. Investigation of flap flexibility of beta-secretase using molecular dynamic simulations. J. Biomol. Struct. Dyn., 2015. doi:10.1080/07391102.2015.106483.

    Google Scholar 

  37. Kumar, A., S. Roy, S. Tripathi, and A. Sharma. Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J. Biomol. Struct. Dyn., 2015. doi:10.1080/07391102.2015.1022603.

    Google Scholar 

  38. Kumar, V., S. Krishna, and M. I. Siddiqi. Virtual screening strategies: recent advances in the identification and design of anti-cancer agents. Methods 71:64–70, 2015.

    Article  Google Scholar 

  39. Kumar, A., A. Singh, and Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep. 67:195–203, 2015.

    Article  Google Scholar 

  40. Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3–26, 2001.

    Article  Google Scholar 

  41. Machauer, R., K. Laumen, S. Veenstra, J.-M. Rondeau, M. Tintelnot-Blomley, C. Betschart, A.-L. Jaton, S. Desrayaud, M. Staufenbiel, S. Rabe, P. Paganetti, and U. Neumann. Macrocyclic peptidomimetic β-secretase (BACE-1) inhibitors with activity in vivo. Bioorg. Med. Chem. Lett. 19:1366–1370, 2009.

    Article  Google Scholar 

  42. Machauer, R., S. Veenstra, J.-M. Rondeau, M. Tintelnot-Blomley, C. Betschart, U. Neumann, and P. Paganetti. Structure-based design and synthesis of macrocyclic peptidomimetic β-secretase (BACE-1) inhibitors. Bioorg. Med. Chem. Lett. 19:1361–1365, 2009.

    Article  Google Scholar 

  43. Martin, K. R., P. Narang, J. L. Medina-Franco, N. Meurice, and J. P. MacKeigan. Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery. Methods 65:219–228, 2014.

    Article  Google Scholar 

  44. Martinez, L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS one 10:e0119264, 2015.

    Article  Google Scholar 

  45. Menting, K. W., and J. A. Claassen. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer’s disease. Front. Aging Neurosci. 6:165, 2014. doi:10.3389/fnagi.2014.00165

    Article  Google Scholar 

  46. Mohamed, T., J. C. Yeung, M. S. Vasefi, M. A. Beazely, and P. P. Rao. Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template. Bioorg. Med. Chem. Lett. 22:4707–4712, 2012.

    Article  Google Scholar 

  47. Morris, G. M., D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19:1639–1662, 1998.

    Article  Google Scholar 

  48. Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30:2785–2791, 2009.

    Article  Google Scholar 

  49. Muegge, I., D. Collin, B. Cook, M. Hill-Drzewi, J. Horan, S. Kugler, M. Labadia, X. Li, L. Smith, and Y. Zhang. Discovery of 1,3-dihydro-2,1,3-benzothiadiazole 2,2-dioxide analogs as new RORC modulators. Bioorg. Med. Chem. Lett. 25:1892–1895, 2015.

    Article  Google Scholar 

  50. Nagarajan, S., M. J. Choi, Y. S. Cho, S. J. Min, G. Keum, S. J. Kim, C. S. Lee, and A. N. Pae. Tubulin inhibitor identification by bioactive conformation alignment pharmacophore (BCAP)-guided virtual screening. Chem. Biol. Drug Des. 2015. doi:10.1111/cbdd.12568.

    MATH  Google Scholar 

  51. Oehlrich, D., H. Prokopcova, and H. J. Gijsen. The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg. Med. Chem. Lett. 24:2033–2045, 2014.

    Article  Google Scholar 

  52. Ohno, M. Roles of eIF2alpha kinases in the pathogenesis of Alzheimer’s disease. Front. Mol. Neurosci. 7:22, 2014.

    Article  Google Scholar 

  53. Pautasso, C., R. Troia, M. Genuardi, and A. Palumbo. Pharmacophore modeling technique applied for the discovery of proteasome inhibitors. Expert Opin. Drug Discov. 9:931–943, 2014.

    Article  Google Scholar 

  54. Poredos, P., D. Celan, J. Mozina, and M. Jezersek. Determination of the human spine curve based on laser triangulation. BMC Med. Imag. 15:2, 2015.

    Article  Google Scholar 

  55. Razzaghi-Asl, N., O. Firuzi, B. Hemmateenejad, K. Javidnia, N. Edraki, and R. Miri. Design and synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridines as small molecule BACE-1 inhibitors. Bioorg. Med. Chem. 21:6893–6909, 2013.

    Article  Google Scholar 

  56. Rojo, I., J. A. Martín, H. Broughton, D. Timm, J. Erickson, H.-C. Yang, and J. R. McCarthy. Macrocyclic peptidomimetic inhibitors of β-secretase (BACE): first X-ray structure of a macrocyclic peptidomimetic-BACE complex. Bioorg. Med. Chem. Lett. 16:191–195, 2006.

    Article  Google Scholar 

  57. Sabbagh, J. J., J. W. Kinney, and J. L. Cummings. Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol. Aging 34:169–183, 2013.

    Article  Google Scholar 

  58. Sanner, M. F. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17:57–61, 1999.

    Google Scholar 

  59. Savonenko, A. V., T. Melnikova, T. Li, D. L. Price, and P. C. Wong. Chapter 21—Alzheimer disease. In: Neurobiology of Brain Disorders, edited by M. J. Z. P. R. T. Coyle. San Diego: Academic Press, 2015, pp. 321–338.

    Google Scholar 

  60. Semighini, E. P. In silico design of beta-secretase inhibitors in Alzheimer’s disease. Chem. Biol. Drug Des. 86:284–290, 2014.

    Article  Google Scholar 

  61. Shimmyo, Y., T. Kihara, A. Akaike, T. Niidome, and H. Sugimoto. Flavonols and flavones as BACE-1 inhibitors: Structure–activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim. Biophys. Acta 1780:819–825, 2008.

    Article  Google Scholar 

  62. Silva, T., J. Reis, J. Teixeira, and F. Borges. Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res. Rev. 15:116–145, 2014.

    Article  Google Scholar 

  63. Sindhu, T., and P. Srinivasan. Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening. Mol. Biosyst. 11:1305–1318, 2015.

    Article  Google Scholar 

  64. Soliman, M. E. S. A hybrid structure/pharmacophore-based virtual screening approach to design potential leads: a computer-aided design of South African HIV-1 subtype c protease inhibitors. Drug Dev. Res. 74:283–295, 2013.

    Article  Google Scholar 

  65. Tang, J., and G. Koelsch. Chapter 14—memapsin 2. In: Handbook of Proteolytic Enzymes, edited by N. D. R. Salvesen. London: Academic Press, 2013, pp. 87–93.

    Chapter  Google Scholar 

  66. Trott, O., and A. J. Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31:455–461, 2010.

    Google Scholar 

  67. Vassar, R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci. 23:105–114, 2004.

    Article  Google Scholar 

  68. Wyss, D. F., Y. S. Wang, H. L. Eaton, C. Strickland, J. H. Voigt, Z. Zhu, and A. W. Stamford. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors. Top. Curr. Chem. 317:83–114, 2012.

    Article  Google Scholar 

  69. Xu, W., G. Chen, W. Zhu, and Z. Zuo. Molecular docking and structure–activity relationship studies on benzothiazole based non-peptidic BACE-1 inhibitors. Bioorg. Med. Chem. Lett. 20:6203–6207, 2010.

    Article  Google Scholar 

  70. Xu, Y., M. J. Li, H. Greenblatt, W. Chen, A. Paz, O. Dym, Y. Peleg, T. Chen, X. Shen, J. He, H. Jiang, I. Silman, and J. L. Sussman. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr. D Biol. Crystallogr. 68:13–25, 2012.

    Article  Google Scholar 

  71. Forli, S. AutoDock | Raccoon: an automated tool for preparing AutoDock virtual screenings.

  72. Yan, X. X., C. Ma, W. P. Gai, H. Cai, and X. G. Luo. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J. Alzheimer’s Dis. 38:705–718, 2014.

    Google Scholar 

  73. Yan, R., and R. Vassar. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 13:319–329, 2014.

    Article  Google Scholar 

  74. Yi Mok, N., J. Chadwick, K. A. B. Kellett, N. M. Hooper, A. P. Johnson, and C. W. G. Fishwick. Discovery of novel non-peptide inhibitors of BACE-1 using virtual high-throughput screening. Bioorg. Med. Chem. Lett. 19:6770–6774, 2009.

    Article  Google Scholar 

  75. Zhang, Z., N. Guan, T. Li, D. E. Mais, and M. Wang. Quality control of cell-based high-throughput drug screening. Acta Pharm. Sin. B 2:429–438, 2012.

    Article  Google Scholar 

  76. Zhou, Z. G., Y. L. Wang, and S. H. Bryant. Computational analysis of the Cathepsin B inhibitors activities through LR-MMPBSA binding affinity calculation based on docked complex. J. Comput. Chem. 30:2165–2175, 2009.

    Google Scholar 

  77. Zhu, Y. P., K. Xiao, H. P. Yu, L. P. Ma, B. Xiong, H. Y. Zhang, X. Wang, J. Y. Li, J. Li, and J. K. Shen. Discovery of potent beta-secretase (bace-1) inhibitors by the synthesis of isophthalamide-containing hybrids. Acta Pharmacol. Sin. 30:259–269, 2009.

    Article  Google Scholar 

Download references

Acknowledgement

Authors like to acknowledge NRF, South Africa and School of Health Sciences, University of KwaZulu-Natal, Westville for financial support and cBio cluster at MSKCC for computational resources.

Conflict of Interest

Kumalo HM and Mahmoud E. Soliman declare that they have no conflict of interest.

Ethical standards

No animal or human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. Soliman.

Additional information

Associate Editor Yiannis Kaznessis oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumalo, H.M., Soliman, M.E. Per-Residue Energy Footprints-Based Pharmacophore Modeling as an Enhanced In Silico Approach in Drug Discovery: A Case Study on the Identification of Novel β-Secretase1 (BACE1) Inhibitors as Anti-Alzheimer Agents. Cel. Mol. Bioeng. 9, 175–189 (2016). https://doi.org/10.1007/s12195-015-0421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0421-8

Keywords

Navigation