Skip to main content
Log in

Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The endocrine differentiation of pancreatic ductal epithelial cells is dependent upon their transition from a two-dimensional monolayer to three-dimensional islet-like clusters. Although clustering of these cells is commonly observed in vitro, it is not yet known whether clustering results from long-range signaling (e.g., chemotaxis) or short-range interactions (e.g., differential adhesion). To determine the mechanism behind clustering, we used experimental and computational modeling to determine the individual contributions of long-range and short-range interactions. Experimentally, the migration of PANC-1 cells on tissue culture treated plastic was tracked by time-lapse microscopy with or without a central cluster of cells that could act as a concentrated source of some long-range signal. Cell migration data was analyzed in terms of distance, number of steps, and migration rate in each direction, as well as migration rate as a function of distance from the cluster. Results did not indicate directed migration toward a central cluster (p > 0.05). Computationally, an agent-based model was used to demonstrate the plausibility of clustering by short-range interactions only. In the presence of random cell migration, this model showed that a high, but not maximal, cell–cell adhesion probability and minimal cell–substrate adhesion probability supported the greatest islet-like cluster formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bauwens, C. L., et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310, 2008.

    Article  Google Scholar 

  2. Beattie, G. M., et al. A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes 51:3435–3439, 2002.

    Article  Google Scholar 

  3. Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31:1–21, 2009.

    MathSciNet  Google Scholar 

  4. Bonner-Weir, S., et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97:7999–8004, 2000.

    Article  Google Scholar 

  5. Boretti, M. I., and K. J. Gooch. Induced cell clustering enhances islet beta cell formation from human cultures enriched for pancreatic ductal epithelial cells. Tissue Eng. 12:939–948, 2006.

    Article  Google Scholar 

  6. Boretti, M. I., and K. J. Gooch. Effect of extracellular matrix and 3D morphogenesis on islet hormone gene expression by Ngn3-infected mouse pancreatic ductal epithelial cells. Tissue Eng. A 14:1927–1937, 2008.

    Article  Google Scholar 

  7. Brereton, H. C., et al. Homotypic cell contact enhances insulin but not glucagon secretion. Biochem. Biophys. Res. Commun. 344:995–1000, 2006.

    Article  Google Scholar 

  8. Choi, Y. Y., B. G. Chung, D. H. Lee, A. Khademhosseini, J.-H. Kim, and S.-H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterial 31:4296–4303, 2010.

    Article  Google Scholar 

  9. Curtis, A. S., and J. V. Forrester. The competitive effects of serum proteins on cell adhesion. J. Cell Sci. 71:17–35, 1984.

    Google Scholar 

  10. Davis, G. E., and C. W. Camarillo. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp. Cell Res. 216:113–123, 1995.

    Article  Google Scholar 

  11. DiMilla, P. A., J. A. Stone, J. A. Quinn, S. M. Albelda, and D. A. Lauffenburger. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122:729–737, 1993.

    Article  Google Scholar 

  12. Ferrell, N., et al. Vacuum-assisted cell seeding in a microwell cell culture system. Anal. Chem. 82:2380–2386, 2010.

    Article  Google Scholar 

  13. Gan, M. J. A. Albanese-O’Neill, and M.J. Haller. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr. Probl. Pediatr. Adolesc. Health Care 42:269–291, 2012.

    Article  Google Scholar 

  14. Gershengorn, M. C., A. A. Hardikar, C. Wei, E. Geras-Raaka, B. Marcus-Samuels, and B. M. Raaka. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306:2261–2264, 2004.

    Article  Google Scholar 

  15. Green, J. E. F., S. L. Waters, K. M. Shakesheff, and H. M. Byrne. A mathematical model of liver cell aggregation in vitro. Bull. Math. Biol. 71:906–930, 2009.

    Article  MathSciNet  Google Scholar 

  16. Hansen, C. H., R. G. Endres, and N. S. Wingreen. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput. Biol. 4:e1, 2008.

    Article  MathSciNet  Google Scholar 

  17. Hardikar, A. A., B. Marcus-Samuels, E. Geras-Raaka, B. M. Raaka, and M. C. Gershengorn. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc. Natl. Acad. Sci. USA 100:7117–7122, 2003.

    Article  Google Scholar 

  18. Hatziavramidis, D. T., T. M. Karatzas, and G. P. Chrousos. Pancreatic islet cell transplantation: an update. Ann. Biomed. Eng. 41:469–476, 2013.

    Article  Google Scholar 

  19. Hummel, K., K. K. McFann, J. Realsen, L. H. Messer, G. J. Klingensmith, and H. P. Chase. The increasing onset of type 1 diabetes in children. J. Pediatr. 161:652–657, 2012.

    Article  Google Scholar 

  20. Hwang, Y.-S., B. G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, and A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106:16978–16983, 2009.

    Article  Google Scholar 

  21. James, S. A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238, 2000.

    Article  Google Scholar 

  22. Kay, R. R., P. Langridge, D. Traynor, and O. Hoeller. Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9:455–463, 2008.

    Article  Google Scholar 

  23. LeCluyse, E. L., P. L. Bullock, and A. Parkinson. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv. Drug Deliv. Rev. 22:133–186, 1996.

    Article  Google Scholar 

  24. Luther, M. J., et al. MIN6 beta-cell–beta-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem. Biophys. Res. Commun. 343:99–104, 2006.

    Article  Google Scholar 

  25. Ma, X., et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. Biophys. Soc. 104:1–9, 2013.

    Google Scholar 

  26. Maher, J., J. V. Martell, B. A. Brantley, E. B. Cox, J. E. Niedel, and W. F. Rosse. The response of human neutrophils to a chemotactic tripeptide (N-formyl-methionyl-leucyl-phenylalanine) studied by microcinematography. Blood 64:221–228, 1984.

    Google Scholar 

  27. Mishra, P. K., S. R. Singh, I. G. Joshua, and S. C. Tyagi. Stem cells as therapeutic target for diabetes. Front Biosci. 15:461–477, 2011.

    Article  Google Scholar 

  28. Park, J., et al. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7:1018–1028, 2007.

    Article  Google Scholar 

  29. Pictet, R. L., W. R. Clark, R. H. Williams, and W. J. Rutter. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 29:436–467, 1972.

    Article  Google Scholar 

  30. Ramiya, V. K., M. Maraist, K. E. Arfors, D. A. Schatz, A. B. Peck, and J. G. Cornelius. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6:278–282, 2000.

    Article  Google Scholar 

  31. Rosenberg, L. Induction of islet cell neogenesis in the adult pancreas: the partial duct obstruction model. Microsc. Res. Tech. 43:337–346, 1998.

    Article  Google Scholar 

  32. Saltzman, W. M. Tissue engineering: engineering principles for the design of replacement organs and tissues. New York: Oxford University Press, p. 544, 2004.

    Google Scholar 

  33. Shapiro, A. M. J., et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.

    Article  Google Scholar 

  34. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science 141:401–408, 1963.

    Article  Google Scholar 

  35. Van Haastert, P. J. M., and M. Postma. Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J. 93:1787–1796, 2007.

    Article  Google Scholar 

  36. Vernon, R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, and E. H. Sage. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547, 1992.

    Google Scholar 

  37. Wei, C., E. Geras-Raaka, B. Marcus-Samuels, Y. Oron, and M. C. Gershengorn. Trypsin and thrombin accelerate aggregation of human endocrine pancreas precursor cells. J. Cell. Physiol. 206:322–328, 2006.

    Article  Google Scholar 

  38. Widman, M. T., D. Emerson, C. C. Chiu, and R. M. Worden. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol. Bioeng. 55:191–205, 1997.

    Article  Google Scholar 

  39. Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University, 1999.

  40. Winer, J. P., S. Oake, and P. A. Janmey. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4:e6382, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation Grants NSF-CMMI (0928739 and 1334757).

Conflict of interest

Mr. Holfinger and Drs. Reinhardt, Reen, Schultz, Passino, Ackerman, Kniss, Sander, Gallego-Perez, and Gooch have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Gooch.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Steven J. Holfinger and James W. Reinhardt are co-first authors.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 798 kb)

Supplementary material 2 (AVI 6622 kb)

Supplementary material 3 (AVI 6720 kb)

Supplementary material 4 (MP4 847 kb)

Supplementary material 5 (AVI 5452 kb)

Supplementary material 6 (DOCX 3543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holfinger, S.J., Reinhardt, J.W., Reen, R. et al. Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration. Cel. Mol. Bioeng. 8, 496–506 (2015). https://doi.org/10.1007/s12195-015-0396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0396-5

Keywords

Navigation