Skip to main content
Log in

Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cell–matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell–matrix adhesions and cell behavior in 2D and 3D microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Acloque, H., M. S. Adams, K. Fishwick, M. Bronner-Fraser, and M. A. Nieto. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Investig. 119:1438–1449, 2009.

    Article  Google Scholar 

  2. Aguado, B. A., W. Mulyasasmita, J. Su, K. J. Lampe, and S. C. Heilshorn. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18:806–815, 2012.

    Article  Google Scholar 

  3. Azam, A., K. E. Laflin, M. Jamal, R. Fernandes, and D. H. Gracias. Self-folding micropatterned polymeric containers. Biomed. Microdevices 13:51–58, 2011.

    Article  Google Scholar 

  4. Berrier, A. L., and K. M. Yamada. Cell-matrix adhesion. J. Cell. Physiol. 213:565–573, 2007.

    Article  Google Scholar 

  5. Canavan, H. E., X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 21:1949–1955, 2005.

    Article  Google Scholar 

  6. Cha, C. E. Y., et al. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules 15:283–290, 2014.

    Article  Google Scholar 

  7. DeVolder, R., and H. J. Kong. Hydrogels for in vivo-like three-dimensional cellular studies. Wiley Interdiscip. Rev. Syst. Biol. Med. 4:351–365, 2012.

    Article  Google Scholar 

  8. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  9. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  Google Scholar 

  10. Feinberg, A. W., and K. K. Parker. Surface-initiated assembly of protein nanofabrics. Nano Lett. 10:2184–2191, 2010.

    Article  Google Scholar 

  11. Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.

    Article  Google Scholar 

  12. Gauvin, R., and A. Khademhosseini. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano 5:4258–4264, 2011.

    Article  Google Scholar 

  13. Geiger, B., A. Bershadsky, R. Pankov, and K. M. Yamada. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2:793–805, 2001.

    Article  Google Scholar 

  14. Haraguchi, Y., et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat. Protoc. 7:850–858, 2012.

    Article  Google Scholar 

  15. Hayman, E. G., M. D. Pierschbacher, S. Suzuki, and E. Ruoslahti. Vitronectin—a major cell attachment-promoting protein in fetal bovine serum. Exp. Cell Res. 160:245, 1985.

    Article  Google Scholar 

  16. Jones, S. P., and S. W. Kennedy. Chicken embryo cardiomyocyte cultures-025 efa new approach for studying effects of halogenated aromatic hydrocarbons in the avian heart. Toxicol. Sci. 109:66–74, 2009.

    Article  Google Scholar 

  17. Jones, D. L., and A. J. Wagers. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9:11–21, 2008.

    Article  Google Scholar 

  18. Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103:2480–2487, 2006.

    Article  Google Scholar 

  19. Kim, D. H., H. Lee, Y. K. Lee, J. M. Nam, and A. Levchenko. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 22:4551–4566, 2010.

    Article  Google Scholar 

  20. Lin, F., X.-D. Ren, Z. Pan, L. Macri, W.-X. Zong, M. G. Tonnesen, M. Rafailovich, D. Bar-Sagi, and R. A. F. Clark. Fibronectin growth factor-binding domains are required for fibroblast survival. J. Invest. Dermatol. 131:84–98, 2011.

    Article  Google Scholar 

  21. Mazzitelli, S., L. Capretto, F. Quinci, R. Piva, and C. Nastruzzi. Preparation of cell-encapsulation devices in confined microenvironment. Adv. Drug Deliv. Rev. 65:1533–1555, 2013.

    Article  Google Scholar 

  22. Okano, T., N. Yamada, H. Sakai, and Y. Sakurai. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(n-isopropylacrylamide). J. Biomed. Mater. Res. 27:1243–1251, 1993.

    Article  Google Scholar 

  23. Orive, G., R. M. Hernández, A. R. Gascón, R. Calafiore, T. M. Chang, P. De Vos, G. Hortelano, D. Hunkeler, I. Lacík, and A. J. Shapiro. Cell encapsulation: promise and progress. Nat. Med. 9:104–107, 2003.

    Article  Google Scholar 

  24. Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005.

    Article  Google Scholar 

  25. Pedraza, E., M. M. Coronel, C. A. Fraker, C. Ricordi, and C. L. Stabler. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl. Acad. Sci. USA 109:4245–4250, 2012.

    Article  Google Scholar 

  26. Peh, G. S. L., R. W. Beuerman, A. Colman, D. T. Tan, and J. S. Mehta. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation 91:811–819, 2011.

    Article  Google Scholar 

  27. Peran, M., M. A. Garcia, E. Lopez-Ruiz, M. Bustamante, G. Jimenez, R. Madeddu, and J. A. Marchal. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 13:3847–3886, 2012.

    Article  Google Scholar 

  28. Selimovic, S., J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini. Microscale strategies for generating cell-encapsulating hydrogels. Polymers 4:1554–1579, 2012.

    Article  Google Scholar 

  29. Steele, J. G., G. Johnson, and P. A. Underwood. Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J. Biomed. Mater. Res. 26:861–884, 1992.

    Article  Google Scholar 

  30. Stern, E., S. M. Jay, S. L. Demento, R. P. Murelli, M. A. Reed, T. Malinski, D. A. Spiegel, D. J. Mooney, and T. M. Fahmy. Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces. Adv. Funct. Mater. 19:2888–2895, 2009.

    Article  Google Scholar 

  31. Stoychev, G., N. Puretskiy, and L. Ionov. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7:3277–3279, 2011.

    Article  Google Scholar 

  32. Sun, Y., R. Duffy, A. Lee, and A. W. Feinberg. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater. 9:7885–7894, 2013.

    Article  Google Scholar 

  33. Szymanski, J. M., Q. Jallerat, and A. W. Feinberg. ECM protein nanofibers and nanostructures engineered using surface-initiated assembly. J. Vis. Exp. 86:e51176, 2014.

    Google Scholar 

  34. Tan, W. H., and S. Takeuchi. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19:2696–2701, 2007.

    Article  Google Scholar 

  35. Toworfe, G. K., R. J. Composto, C. S. Adams, I. M. Shapiro, and P. Ducheyne. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J. Biomed. Mater. Res. Part A 71A:449–461, 2004.

    Article  Google Scholar 

  36. Zhang, M., D. Methot, V. Poppa, Y. Fujio, K. Walsh, and C. E. Murry. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33:907–921, 2001.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided to R.N.P from the Fox Center for Vision Restoration OTERO program, to J.M.S. from the NIH Biomechanics in Regenerative Medicine T32 Training Program (2T32EB003392) and to A.W.F. from the NIH Director’s New Innovator Award (1DP2HL117750).

Conflict of interest

Rachelle N. Palchesko, John M. Szymanski, Amrita Sahu and Adam W. Feinberg declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. Feinberg.

Additional information

Associate Editor Cynthia A. Reinhart-King oversaw the review of this article.

This paper is part of the 2014 Young Innovators Issue.

Rachelle N. Palchesko, John M. Szymanski and Amrita Sahu Denotes have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 3468 kb)

Supplementary material 2 (MPG 876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palchesko, R.N., Szymanski, J.M., Sahu, A. et al. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment. Cel. Mol. Bioeng. 7, 355–368 (2014). https://doi.org/10.1007/s12195-014-0348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0348-5

Keywords

Navigation