Skip to main content
Log in

Highly Transient Molecular Interactions Underlie the Stability of Kinetochore–Microtubule Attachment During Cell Division

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Chromosome segregation during mitosis is mediated by spindle microtubules that attach to chromosomal kinetochores with strong yet labile links. The exact molecular composition of the kinetochore–microtubule interface is not known but microtubules are thought to bind to kinetochores via the specialized microtubule-binding sites, which contain multiple microtubule-binding proteins. During prometaphase the lifetime of microtubule attachments is short but in metaphase it increases 3-fold, presumably owing to dephosphorylation of the microtubule-binding proteins that increases their affinity. Here, we use mathematical modeling to examine in quantitative and systematic manner the general relationships between the molecular properties of microtubule-binding proteins and the resulting stability of microtubule attachment to the protein-containing kinetochore site. We show that when the protein connections are stochastic, the physiological rate of microtubule turnover is achieved only if these molecular interactions are very transient, each lasting fraction of a second. This “microscopic” time is almost four orders of magnitude shorter than the characteristic time of kinetochore–microtubule attachment. Cooperativity of the microtubule-binding events further increases the disparity of these time scales. Furthermore, for all values of kinetic parameters the microtubule stability is very sensitive to the minor changes in the molecular constants. Such sensitivity of the lifetime of microtubule attachment to the kinetics and cooperativity of molecular interactions at the microtubule-binding site may hinder the accurate regulation of kinetochore–microtubule stability during mitotic progression, and it necessitates detailed experimental examination of the microtubule-binding properties of kinetochore-localized proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

MAP:

Microtubule-associated protein

MT:

Microtubule

KMT:

Kinetochore microtubule

References

  1. Akiyoshi, B., K. K. Sarangapani, A. F. Powers, C. R. Nelson, S. L. Reichow, H. Arellano-Santoyo, T. Gonen, J. A. Ranish, C. L. Asbury, and S. Biggins. Tension directly stabilizes reconstituted kinetochore–microtubule attachments. Nature 468(7323):576–579, 2010.

    Article  Google Scholar 

  2. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell (5th ed.). New York: Garland Science, pp. 1082–1086, 2008.

    Google Scholar 

  3. Alushin, G. M., V. Musinipally, D. Matson, J. Tooley, P. T. Stukenberg, and E. Nogales. Multimodal microtubule binding by the Ndc80 kinetochore complex. Nat. Struct. Mol. Biol. 19(11):1161–1167, 2012.

    Article  Google Scholar 

  4. Alushin, G. M., V. H. Ramey, S. Pasqualato, D. A. Ball, N. Grigorieff, A. Musacchio, and E. Nogales. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467(7317):805–810, 2010.

    Article  Google Scholar 

  5. Aravamudhan, P., I. Felzer-Kim, and A. P. Joglekar. The budding yeast point centromere associates with two Cse4 molecules during mitosis. Curr. Biol. 23(9):770–774, 2013.

    Article  Google Scholar 

  6. Armond, J. W., and M. S. Turner. Force transduction by the microtubule-bound Dam1 ring. Biophys. J . 98(8):1598–1607, 2010.

    Article  Google Scholar 

  7. Bakhoum, S. F., G. Genovese, and D. A. Compton. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol. 19(22):1937–1942, 2009.

    Article  Google Scholar 

  8. Bakhoum, S. F., S. L. Thompson, A. L. Manning, and D. A. Compton. Genome stability is ensured by temporal control of kinetochore–microtubule dynamics. Nat. Cell Biol. 11(1):27–35, 2009.

    Article  Google Scholar 

  9. Cheeseman, I. M., S. Anderson, M. Jwa, E. M. Green, J. Kang, J. R. Yates, 3rd, C. S. Chan, D. G. Drubin, and G. Barnes. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111(2):163–172, 2002.

    Article  Google Scholar 

  10. Cheeseman, I. M., J. S. Chappie, E. M. Wilson-Kubalek, and A. Desai. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127(5):983–997, 2006.

    Article  Google Scholar 

  11. Cimini, D., X. Wan, C. B. Hirel, and E. D. Salmon. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 16(17):1711–1718, 2006.

    Article  Google Scholar 

  12. Civelekoglu-Scholey, G., B. He, M. Shen, X. Wan, E. Roscioli, B. Bowden, and D. Cimini. Dynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells. J. Cell Biol. 201(4):577–593, 2013.

    Article  Google Scholar 

  13. DeLuca, J. G., W. E. Gall, C. Ciferri, D. Cimini, A. Musacchio, and E. D. Salmon. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127(5):969–982, 2006.

    Article  Google Scholar 

  14. Dong, Y., K. J. Vanden Beldt, X. Meng, A. Khodjakov, and B. F. McEwen. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 9(5):516–522, 2007.

    Article  Google Scholar 

  15. Efremov, A., E. L. Grishchuk, J. R. McIntosh, and F. I. Ataullakhanov. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc. Natl. Acad. Sci. U.S.A. 104(48):19017–19022, 2007.

    Article  Google Scholar 

  16. Franck, A. D., A. F. Powers, D. T. Gestaut, T. Gonen, T. N. Davis, and C. L. Asbury. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat. Cell Biol. 9(7):832–837, 2007.

    Article  Google Scholar 

  17. Gardner, M. K., C. G. Pearson, B. L. Sprague, T. R. Zarzar, K. Bloom, E. D. Salmon, and D. J. Odde. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16:3764–3775, 2005.

    Article  Google Scholar 

  18. Grishchuk, E. L., J. R. McIntosh, M. I. Molodtsov, and F. I. Ataullakhanov. Comprehensive Biophysics, Vol. 4. Amsterdam: Elsevier, pp. 93–117, 2012.

    Book  Google Scholar 

  19. Hill, A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40:iv–vii, 1910.

    Google Scholar 

  20. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. U.S.A. 82:4404–4408, 1985.

    Article  Google Scholar 

  21. Joglekar, A. P., and A. J. Hunt. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys. J . 83(1):42–58, 2002.

    Article  Google Scholar 

  22. Johnston, K., A. Joglekar, T. Hori, A. Suzuki, T. Fukagawa, and E. D. Salmon. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189(6):937–943, 2010.

    Article  Google Scholar 

  23. Jordan, M. A., and K. Kamath. How do microtubule-targeted drugs work? An overview. Curr. Cancer Drug Targets 7(8):730–742, 2007.

    Article  Google Scholar 

  24. Lawrimore, J., K. S. Bloom, and E. D. Salmon. Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J. Cell Biol. 195(4):573–582, 2011.

    Article  Google Scholar 

  25. Liu, J., and J. N. Onuchic. A driving and coupling “Pac-Man” mechanism for chromosome poleward translocation in anaphase A. Proc. Natl. Acad. Sci. U.S.A. 103(49):18432–18437, 2006.

    Article  Google Scholar 

  26. McDonald, K. L., E. T. O’Toole, D. N. Mastronarde, and J. R. McIntosh. Kinetochore microtubules in PTK cells. J. Cell Biol. 118(2):369–383, 1992.

    Article  Google Scholar 

  27. McEwen, B. F., A. B. Heagle, G. O. Cassels, K. F. Buttle, and C. L. Rieder. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137(7):1567–1580, 1997.

    Article  Google Scholar 

  28. McIntosh, J. R., E. L. Grishchuk, M. K. Morphew, A. K. Efremov, K. Zhudenkov, V. A. Volkov, I. M. Cheeseman, A. Desai, D. N. Mastronarde, and F. I. Ataullakhanov. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135(2):322–333, 2008.

    Article  Google Scholar 

  29. McIntosh, J. R., E. L. Grishchuk, and R. R. West. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18:193–219, 2002.

    Article  Google Scholar 

  30. McIntosh, J. R., E. O’Toole, K. Zhudenkov, M. Morphew, C. Schwartz, F. I. Ataullakhanov, and E. L. Grishchuk. Conserved and divergent features of kinetochores and spindle microtubule ends from five species. J. Cell Biol. 200(4):459–474, 2013.

    Article  Google Scholar 

  31. Molodtsov, M. I., E. L. Grishchuk, A. K. Efremov, J. R. McIntosh, and F. I. Ataullakhanov. Force production by depolymerizing microtubules. Proc. Natl. Acad. Sci. U.S.A. 102(12):4353–4358, 2005.

    Article  Google Scholar 

  32. Nicklas, R. B. Chromosome velocity during mitosis as a function of chromosome size and position. J. Cell Biol. 25:119–135, 1965.

    Article  Google Scholar 

  33. Powers, A. F., A. D. Franck, D. R. Gestaut, J. Cooper, B. Gracyzk, R. R. Wei, L. Wordeman, T. N. Davis, and C. L. Asbury. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136(5):865–875, 2009.

    Article  Google Scholar 

  34. Rank, K. C., and I. Rayment. Functional asymmetry in kinesin and dynein dimers. Biol. Cell 105(1):1–13, 2013.

    Article  Google Scholar 

  35. Santaguida, S., and A. Musacchio. The life and miracles of kinetochores. EMBO J. 28(17):2511–2531, 2009.

    Article  Google Scholar 

  36. Schmidt, J. C., H. Arthanari, A. Boeszoermenyi, N. M. Dashkevich, E. M. Wilson-Kubalek, N. Monnier, M. Markus, M. Oberer, R. A. Milligan, M. Bathe, G. Wagner, E. L. Grishchuk, and I. M. Cheeseman. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev. Cell 23(5):968–980, 2012.

    Article  Google Scholar 

  37. Shen, Q. T., P. P. Hsiue, C. V. Sindelar, M. D. Welch, K. G. Campellone, and H. W. Wang. Structural insights into WHAMM-mediated cytoskeletal coordination during membrane remodeling. J. Cell Biol. 199(1):111–124, 2012.

    Article  Google Scholar 

  38. Shivaraju, M., J. R. Unruh, B. D. Slaughter, M. Mattingly, J. Berman, and J. L. Gerton. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell 150(2):304–316, 2012.

    Article  Google Scholar 

  39. Shtylla, B., and J. P. Keener. A mechanomolecular model for the movement of chromosomes during mitosis driven by a minimal kinetochore bicyclic cascade. J. Theor. Biol. 263(4):455–470, 2010.

    Article  MathSciNet  Google Scholar 

  40. Thompson, S. L., S. F. Bakhoum, and D. A. Compton. Mechanisms of chromosomal instability. Curr. Biol. 20(6):R285–R295, 2010.

    Article  Google Scholar 

  41. Umbreit, N. T., D. R. Gestaut, J. F. Tien, B. S. Vollmar, T. Gonen, C. L. Asbury, and T. N. Davis. The Ndc80 kinetochore complex directly modulates microtubule dynamics. Proc. Natl. Acad. Sci. U.S.A. 109(40):16113–16118, 2012.

    Article  Google Scholar 

  42. Volkov, V. A., A. V. Zaytsev, N. Gudimchuk, P. M. Grissom, A. L. Gintsburg, F. I. Ataullakhanov, J. R. McIntosh, and E. L. Grishchuk. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Proc. Natl. Acad. Sci. U.S.A. 110(19):7708–7713, 2013.

    Article  Google Scholar 

  43. Wan, X., R. P. O’Quinn, H. L. Pierce, A. P. Joglekar, W. E. Gall, J. G. DeLuca, C. W. Carroll, S. T. Liu, T. J. Yen, B. F. McEwen, P. T. Stukenberg, A. Desai, and E. D. Salmon. Protein architecture of the human kinetochore microtubule attachment site. Cell 137(4):672–684, 2009.

    Article  Google Scholar 

  44. Westermann, S., H. W. Wang, A. Avila-Sakar, D. G. Drubin, E. Nogales, and G. Barnes. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440(7083):565–569, 2006.

    Article  Google Scholar 

  45. Wilson-Kubalek, E. M., I. M. Cheeseman, C. Yoshioka, A. Desai, and R. A. Milligan. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 182(6):1055–1061, 2008.

    Article  Google Scholar 

  46. Wollman, R., G. Civelekoglu-Scholey, J. M. Scholey, and A. Mogilner. Reverse engineering of force integration during mitosis in the Drosophila embryo. Mol. Syst. Biol. 4:195, 2008.

    Article  Google Scholar 

  47. Zhai, Y., P. J. Kronebusch, and G. G. Borisy. Kinetochore microtubule dynamics and the metaphase–anaphase transition. J. Cell Biol. 131(3):721–734, 1995.

    Article  Google Scholar 

  48. Zinkowski, R. P., J. Meyne, and B. R. Brinkley. The centromere–kinetochore complex: a repeat subunit model. J. Cell Biol. 113(5):1091–1110, 1991.

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Grishchuk and Ataullakhanov laboratories, J. DeLuca and E. Ballister for stimulating discussions; A. Potapenko for reading of the manuscript; J.R. McIntosh for supporting this project (GM033787). This work was supported by National Institutes of Health Grant GM098389 to ELG, by Russian Academy of Sciences Presidium Grants “Mechanisms of the Molecular Systems Integration” and “Molecular and Cell Biology programs” and by Russian Fund for Basic Research Grant 12-04-00111-a to FIA. ELG is a Kimmel Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina L. Grishchuk.

Additional information

Associate Editor David Odde oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaytsev, A.V., Ataullakhanov, F.I. & Grishchuk, E.L. Highly Transient Molecular Interactions Underlie the Stability of Kinetochore–Microtubule Attachment During Cell Division. Cel. Mol. Bioeng. 6, 393–405 (2013). https://doi.org/10.1007/s12195-013-0309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0309-4

Keywords

Navigation