Skip to main content
Log in

Modulation of Nuclear Shape by Substrate Rigidity

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The nucleus is mechanically coupled to the three cytoskeletal elements in the cell via linkages maintained by the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton). It has been shown that mechanical forces from the extracellular matrix (ECM) can be transmitted through the cytoskeleton to the nuclear surface. Here we quantified nuclear shape in NIH 3T3 fibroblasts on polyacrylamide gels with a controlled degree of cross-linking. On soft substrates with a Young’s modulus of 0.4 kPa, the nucleus appeared rounded in its vertical cross-section, while on stiff substrates (308 kPa), the nucleus appears more flattened. Over-expression of dominant negative Klarsicht ANC-1 Syne Homology (KASH) domains, which disrupts the LINC complex, eliminated the sensitivity of nuclear shape to substrate rigidity; myosin inhibition had similar effects. GFP-KASH4 over-expression altered the rigidity dependence of cell motility and cell spreading. Taken together, our results suggest that nuclear shape is modulated by substrate rigidity-induced changes in actomyosin tension, and that a mechanically integrated nucleus-cytoskeleton is required for rigidity sensing. These results are significant because they suggest that substrate rigidity can potentially control nuclear function and hence cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ben-Ze’ev, A., S. R. Farmer, and S. Penman. Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell 21(2):365–372, 1980.

    Article  Google Scholar 

  2. Bissell, M. J., and J. Aggeler. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog. Clin. Biol. Res. 249:251–262, 1987.

    Google Scholar 

  3. Bissell, M. J., and M. H. Barcellos-Hoff. The influence of extracellular matrix on gene expression: is structure the message? J. Cell Sci. Suppl. 8:327–343, 1987.

    Article  Google Scholar 

  4. Bissell, M. J., H. G. Hall, and G. Parry. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99(1):31–68, 1982.

    Article  Google Scholar 

  5. Boudou, T., et al. An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology 43(6):721–728, 2006.

    MathSciNet  Google Scholar 

  6. Bray, M. A., et al. Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials 31(19):5143–5150, 2010.

    Article  Google Scholar 

  7. Brosig, M., et al. Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. Int. J. Biochem. Cell Biol. 42(10):1717–1728, 2010.

    Article  Google Scholar 

  8. Burke, B., and K. J. Roux. Nuclei take a position: managing nuclear location. Dev. Cell 17(5):587–597, 2009.

    Article  Google Scholar 

  9. Buxboim, A., et al. How deeply cells feel: methods for thin gels. J. Phys. Condens. Matter. 22(19):194116.

  10. Buxboim, A., I. L. Ivanovska, and D. E. Discher. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J. Cell Sci. 123(Pt 3):297–308, 2010.

    Article  Google Scholar 

  11. Chancellor, T. J., et al. Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys. J . 99(1):115–123, 2010.

    Article  Google Scholar 

  12. Chen, C. S., et al. Geometric control of cell life and death. Science 276(5317):1425–1428, 1997.

    Article  Google Scholar 

  13. Chiu, J. J., S. Usami, and S. Chien. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41(1):19–28, 2009.

    Article  Google Scholar 

  14. Crisp, M., et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172(1):41–53, 2006.

    Article  Google Scholar 

  15. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  Google Scholar 

  16. Engler, A. J., et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6):877–887, 2004.

    Article  Google Scholar 

  17. Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  Google Scholar 

  18. Farmer, S. R., et al. Regulation of actin mRNA levels and translation responds to changes in cell configuration. Mol. Cell. Biol. 3(2):182–189, 1983.

    MathSciNet  Google Scholar 

  19. Fereol, S., et al. Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophys. J. 96(5):2009–2022, 2009.

    Article  Google Scholar 

  20. Fischer-Vize, J. A., and K. L. Mosley. Marbles mutants: uncoupling cell determination and nuclear migration in the developing Drosophila eye. Development 120(9):2609–2618, 1994.

    Google Scholar 

  21. Georges, P. C., and P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4):1547–1553, 2005.

    Article  Google Scholar 

  22. Ghibaudo, M., A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys, P. Silberzan, A. Buguin, and B. Ladoux. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–1843, 2008.

    Article  Google Scholar 

  23. Goeckeler, Z. M., P. C. Bridgman, and R. B. Wysolmerski. Nonmuscle myosin II is responsible for maintaining endothelial cell basal tone and stress fiber integrity. Am. J. Physiol. Cell Physiol. 295(4):C994–C1006, 2008.

    Article  Google Scholar 

  24. Hague, F., D. Lloyd, D. T. Smallwood, C. L. Dent, C. Shanahan, A. Fry, R. Trembath, and S. Shackleton. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell Biol. 26(10):3738–3751, 2006.

    Google Scholar 

  25. Huang, N. F., and S. Li. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann. Biomed. Eng. 39(4):1201–1214, 2011.

    Article  Google Scholar 

  26. Ingber, D. E., and I. Tensegrity. Cell structure and hierarchical systems biology. J. Cell Sci. 116(Pt 7):1157–1173, 2003.

    Article  Google Scholar 

  27. Itano, N., et al. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl Acad. Sci. USA. 100(9):5181–5186, 2003.

    Article  Google Scholar 

  28. Ketema, M., and A. Sonnenberg. Nesprin-3: a versatile connector between the nucleus and the cytoskeleton. Biochem. Soc. Trans. 39(6):1719–1724.

  29. Khatau, S. B., et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA. 106(45):19017–19022, 2009.

    Article  Google Scholar 

  30. Kovacs, M., et al. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34):35557–35563, 2004.

    Article  Google Scholar 

  31. Kuypers, L. C., et al. A procedure to determine the correct thickness of an object with confocal microscopy in case of refractive index mismatch. J. Microsc. 218(Pt 1):68–78, 2005.

    Article  MathSciNet  Google Scholar 

  32. Lele, T. P., et al. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell. Physiol. 207(1):187–194, 2006.

    Article  MathSciNet  Google Scholar 

  33. Lo, C. M., et al. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79(1):144–152, 2000.

    Article  Google Scholar 

  34. Lombardi, M. L., et al. The Interaction between Nesprins and Sun Proteins at the Nuclear Envelope Is Critical for Force Transmission between the Nucleus and Cytoskeleton. J. Biol. Chem. 286(30):26743–26753, 2011.

    Article  Google Scholar 

  35. Luxton, G. W., et al. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329(5994):956–959, 2010.

    Article  Google Scholar 

  36. Malone, C. J., et al. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126(14):3171–3181, 1999.

    Google Scholar 

  37. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA. 94(3):849–854, 1997.

    Article  Google Scholar 

  38. Mosley-Bishop, K. L., et al. Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye. Curr. Biol. 9(21):1211–1220, 1999.

    Article  Google Scholar 

  39. Nagayama, K., Y. Yahiro, and T. Matsumoto. Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585(24):3992–3997, 2011.

    Article  Google Scholar 

  40. Pelham, R. J., Jr., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA. 94(25):13661–13665, 1997.

    Google Scholar 

  41. Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204(1):198–209, 2005.

    Article  Google Scholar 

  42. Reiter, T., S. Penman, and D. G. Capco. Shape-dependent regulation of cytoskeletal protein synthesis in anchorage-dependent and anchorage-independent cells. J. Cell Sci. 76:17–33, 1985.

    Google Scholar 

  43. Roux, K. J., et al. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc. Natl Acad. Sci. USA. 106(7):2194–2199, 2009.

    Article  MathSciNet  Google Scholar 

  44. Saez, A., et al. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89(6):L52–L54, 2005.

    Article  MathSciNet  Google Scholar 

  45. Schlunck, G., et al. Substrate rigidity modulates cell matrix interactions and protein expression in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 49(1):262–269, 2008.

    Article  Google Scholar 

  46. Seliktar, D., R. M. Nerem, and Z. S. Galis. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng. 9(4):657–666, 2003.

    Article  Google Scholar 

  47. Sen, S., A. J. Engler, and D. E. Discher. Matrix strains induced by cells: Computing how far cells can feel. Cell. Mol. Bioeng. 2(1):39–48, 2009.

    Article  Google Scholar 

  48. Sims, J. R., S. Karp, and D. E. Ingber. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J. Cell Sci. 103(Pt 4):1215–1222, 1992.

    Google Scholar 

  49. Solon, J., et al. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J . 93(12):4453–4461, 2007.

    Article  Google Scholar 

  50. Starr, D. A., and H. N. Fridolfsson. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol. 26:421–444, 2010.

    Article  Google Scholar 

  51. Starr, D. A., and M. Han. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298(5592):406–409, 2002.

    Article  Google Scholar 

  52. Stewart-Hutchinson, P. J., et al. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314(8):1892–1905, 2008.

    Article  Google Scholar 

  53. Thomas, C. H., et al. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl Acad. Sci. USA. 99(4):1972–1977, 2002.

    Article  Google Scholar 

  54. Towbin, B. D., P. Meister, and S. M. Gasser. The nuclear envelope–a scaffold for silencing? Curr. Opin. Genet. Dev. 19(2):180–186, 2009.

    Article  Google Scholar 

  55. Trappmann, B., et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11(7):642–649, 2012.

    Article  Google Scholar 

  56. Tzur, Y. B., K. L. Wilson, and Y. Gruenbaum. SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 7(10):782–788, 2006.

    Article  Google Scholar 

  57. Ulrich, T. A., E. M. de Juan Pardo, and S. Kumar. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69(10):4167–4174, 2009.

  58. Wilhelmsen, K., et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171(5):799–810, 2005.

    Article  Google Scholar 

  59. Wittelsberger, S. C., K. Kleene, and S. Penman. Progressive loss of shape-responsive metabolic controls in cells with increasingly transformed phenotype. Cell 24(3):859–866, 1981.

    Article  Google Scholar 

  60. Weng, S., and J. Fu. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32(36):9584–93.

  61. Simon, D. N., and K. L. Wilson. The nucleoskeleton as a genome-associated dynamic ‘network of networks’. Nat. Rev. Mol. Cell Biol. 12(11):695–708.

  62. Zemel, A., et al. Optimal matrix rigidity for stress fiber polarization in stem cells. Nat. Phys. 6(6):468–473.

  63. Fouchard, J., D. Mitrossilis, and A. Asnacios. Acto-myosin based response to stiffness and rigidity sensing. Cell Adh. Migr. 5(1):16–19.

  64. Yen, A., and A. B. Pardee. Role of nuclear size in cell growth initiation. Science 204(4399):1315–1317, 1979.

    Article  Google Scholar 

  65. Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60(1):24–34, 2005.

    Article  Google Scholar 

  66. Zhang, J., et al. Nesprin 1 is critical for nuclear positioning and anchorage. Hum. Mol. Genet. 19(2):329–341, 2010.

    Article  Google Scholar 

  67. Zhou, Z., et al. Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J. Biol. Chem. 287(8):5317–5326, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge help from Lynn Combee, Craig Moneypenny and Neal Benson for helpful discussion and running FACS analysis, from Chris Gasser and Varun Aggarwal for help with confocal imaging, and from David Hays for help measuring gel thickness. This work was supported by the National Science Foundation under awards CMMI 0954302 (T.P.L.) and NIH R01 EB014869 (T.P.L.).

Conflict of interest

The authors have no conflicts of interest related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay P. Lele.

Additional information

Associate Editor Dennis Discher oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovett, D.B., Shekhar, N., Nickerson, J.A. et al. Modulation of Nuclear Shape by Substrate Rigidity. Cel. Mol. Bioeng. 6, 230–238 (2013). https://doi.org/10.1007/s12195-013-0270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0270-2

Keywords

Navigation