Skip to main content
Log in

A Differential Equation Model for Tropomyosin-induced Myosin Cooperativity Describes Myosin–Myosin Interactions at Low Calcium

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Mechanochemical interactions between myosin and actin-troponin-tropomyosin (regulated thin filaments) underlie muscle contraction. Generally, the binding of a myosin molecule to a regulated thin filament facilitates the binding of nearby myosin; binding is cooperative. A simple yet accurate theoretical description of this cooperativity is lacking. From a general mechanochemical model that treats tropomyosin as a continuous beam, we show that cooperative interactions can be defined by two parameters: \(\mathcal{C}, \) which specifies the number of neighboring molecules affected by myosin binding, and δ, which specifies how regulation slows myosin’s binding rate to actin. We then propose two methods to derive differential equations describing cooperative ensembles of myosin interacting with regulated thin filaments: the weakly-correlated and the linear theory. The linear theory fits measurements of the speed of regulated thin filaments moving over a dense bed of myosin at low calcium, giving rapid and precise estimates of \(\mathcal{C}=11\pm 2\) and δ = 0.003 ± 0.002. The theory clarifies the relationship between microscopic measurements and macroscopic properties, serving as a step toward a complete multi-scale description of muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Als-Nielson, J., and R. J. Birgeneau. Mean field theory, the Ginzburg criterion and marginal dimensionality of phase transitions. Am. J. Phys. 45:554–560, 1977.

    Article  Google Scholar 

  2. Campbell, K. S. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle. PLoS Comp. Biol. 7:e1000560, 2009.

    Google Scholar 

  3. Craig, R., and W. Lehman. Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J. Mol. Biol. 311:1027–1036, 2001.

    Article  Google Scholar 

  4. Debold, E. P., W. Saber, Y. Cheema, C. S. Bookwalter, K. M. Trybus, D. M. Warshaw, and P. J. VanBuren. Human actin mutations associated with hypertrophic and dilated cardiomyopathies demonstrate distinct thin filament regulatory properties in vitro. Mol. Cell. Cardiol. 48:286–292, 2010.

    Article  Google Scholar 

  5. Duke, T. A. J. Molecular model of muscle contraction. Proc. Natl. Acad. Sci. 96:2770–2775, 1999.

    Article  Google Scholar 

  6. Eisenberg, E., T. L. Hill, and Y.-D. Chen. Cross-bridge model of muscle contraction. Quantitative analysis. Biophys J. 29:195–227, 1980.

    Article  Google Scholar 

  7. Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119, 1994.

    Article  Google Scholar 

  8. Geeves, M. A., and S. S. Lehrer. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys. J. 67:273–282, 1994.

    Article  Google Scholar 

  9. Geeves, M., H. Griffiths, S. Mijailovich, and D. A. Smith. Cooperative [Ca2+]-dependent regulation of the rate of myosin binding to actin: solution data and the tropomyosin chain model. Biophys. J. 100:2679–2687, 2011.

    Article  Google Scholar 

  10. Greene, L., and E. Eisenberg. Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex. Proc. Natl. Acad. Sci. 77:2616–2620, 1980.

    Article  Google Scholar 

  11. Guilford, W. H., D. E. Depuis, G. Kennedy, J. Wu, J. B. Patlak, and D. M. Warshaw. Smooth muscle and skeletal muscle myosin produce similar unitary forces and displacements in the laser trap. Biophys. J. 72:1006–1021, 1997.

    Article  Google Scholar 

  12. Harris, D. E., and D. M. Warshaw. Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J. Biol. Chem. 268:14764–14768, 1993.

    Google Scholar 

  13. Hill, T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol. 28:267–340, 1974.

    Article  Google Scholar 

  14. Hill, T. L., E. Eisenberg, and L. Greene. Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc. Natl. Acad. Sci. 77:3186–3190, 1980.

    Article  Google Scholar 

  15. Hill, T. L., E. Eisenberg, and J. M. Chalovich. Theoretical models for cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Biophys. J. 35:99–112, 1981.

    Article  Google Scholar 

  16. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7:255–318, 1957.

    Google Scholar 

  17. Ishijima, A., Y. Harada, H. Kojima, T. Funatsu, H. Higuchi, and T. Yanagida. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199:1057–1063, 1994.

    Article  Google Scholar 

  18. Kad, N. M., J. B. Patlak, P. M. Fagnant, K. M. Trybus, and D. M. Warshaw. Mutation of a conserved glycine in the SH1-SH2 helix affects the load-dependent kinetics of myosin. Biophys. J. 92:1623–1631, 2007.

    Article  Google Scholar 

  19. Kad, N. M., A. S. Rovner, P. M. Fagnant, P. B. Joel, G. G. Kennedy, J. B. Patlak, D. M. Warshaw, and K. M. Trybus. A mutant heterodimeric myosin with one inactive head generates maximal displacement. J. Cell. Biol. 162:481–488, 2003.

    Article  Google Scholar 

  20. Kad, N. M., S. Kim, D. M. Warshaw, P. VanBuren, and J. E. Baker. Single myosin crosbridge interactions with actin filaments regulated by troponin-tropomyosin. Proc. Natl. Acad. Sci. 102:16990–16995, 2005.

    Article  Google Scholar 

  21. Lacker, H. M. Cross-bridge dynamics in skeletal muscle: mathematical methods for determining the reaction rate and force-extension curves of cross-bridges from the macroscopic behavior of muscle. PhD Thesis, NYU, 1977.

  22. Lacker, H. M., and C. S. Peskin. A mathematical method for the unique determination of cross-bridge properties from steady-state mechanical and energetic experiments on macroscopic muscle. Lect. Math. Life Sci. 16:121–153, 1986.

    MathSciNet  Google Scholar 

  23. Liu, Y., M. Scolari, W. Im, and H. J. Woo. Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: a molecular dynamics study. Prot. Struct. Funct. Bioinf. 64:156–166, 2006.

    Article  Google Scholar 

  24. Lymn, R. W., and E. W. Taylor. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624, 1971.

    Article  Google Scholar 

  25. McKillop, D. F. A., and M. A. Geeves. Regulation of the interaction between actin and myosin subfragment I: evidence for three states of the thin filament. Biophys. J. 65:693–701, 1993.

    Article  Google Scholar 

  26. Mijailovich, S. M., X. Li, R. H. Griffiths, and M. A. Geeves. The Hill model for binding myosin S1 to regulated actin is not equivalent to the McKillop-Geeves model. J. Mol. Biol. 417:112–128, 2012.

    Article  Google Scholar 

  27. Molloy, J. E., J. E. Burns, J. Kendrick-Jones, R. T. Tregear, and D. C. S. White. Movement and force produced by a single myosin head . Nature 378:209–212, 1995.

    Article  Google Scholar 

  28. Orlova, A., and E. H. Egelman. Cooperative rigor binding of myosin to actin is a function of F-actin structure. J. Mol. Biol. 265:469–474, 1997.

    Article  Google Scholar 

  29. Sich, N. M., T. J. O’Donnell, S. A. Coulter, O. A. John, M. S. Carter, C. R. Cremo, and J. E. Baker. Effects of actin-myosin kinetics on the calcium sensitivity of regulated thin filaments. J. Biol. Chem. 285:39150–39159, 2010.

    Article  Google Scholar 

  30. Smith, D. A. Path-integral theory of an axially confined worm-like chain. J. Phys. A: Math. Gen. 34:4507–4523, 2001.

    Article  MATH  Google Scholar 

  31. Smith, D. A., R. Maytum, and M. A. Geeves. Cooperative regulation of myosin-actin interactions by a continuous flexible chain I: actin-tropomyosin systems. Biophys. J. 84:3155–3167, 2003.

    Article  Google Scholar 

  32. Steffen, W., and J. Sleep. Repriming the acomyosin crossbridge cycle Proc. Natl. Acad. Sci. 101:12904–12909, 2004.

    Article  Google Scholar 

  33. Stoecker, U., I. A. Telley, E. Stüssi, and J. J. Denoth. A multisegmental cross-bridge kinetics model of the myofibril. J. Theor. Biol. 259:714–726, 2009.

    Article  Google Scholar 

  34. Tanner, B. C. W., T. L. Daniel, and M. Regnier. Sarcomere lattice geometry influences the cooperative myosin binding in muscle. PLoS Comp. Biol. 3:e115, 2007.

    Google Scholar 

  35. Uyeda, T. Q. P., S. J. Kron, and J. A. Spudich. Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol. 214:699–710, 1990.

    Article  Google Scholar 

  36. Veigel, C., J. E. Molloy, S. Schmitz, and J. Kendrick-Jones. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat. Cell Biol. 5:980–986, 2003.

    Article  Google Scholar 

  37. Walcott, S., and S. X. Sun. Hysteresis in cross-bridge models of muscle. Phys. Chem. Chem. Phys. 11:4871–4881, 2009.

    Article  Google Scholar 

  38. Walcott, S., D. M. Warshaw, and E. P. Debold. Mechanical coupling between myosin molecules causes differences between ensemble and single molecule measurements. Biophys. J. 103:501–510, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Neil M. Kad for critiquing an earlier version of the manuscript, to Dr. Edward P. Debold and Matthew A. Turner for their experimental efforts, and to Dr. Sean X. Sun and Dr. Sven Bachmann for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Walcott.

Additional information

Associate Editor Jung-Chi Liao and Henry Hess oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (263 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walcott, S. A Differential Equation Model for Tropomyosin-induced Myosin Cooperativity Describes Myosin–Myosin Interactions at Low Calcium. Cel. Mol. Bioeng. 6, 13–25 (2013). https://doi.org/10.1007/s12195-012-0259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0259-2

Keywords

Navigation