Skip to main content

Advertisement

Log in

Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ACD:

Allergic Contact Dermatitis

BBB:

Blood Brain Barrier

BgVV:

Bundesinstitut für Gesundheitlichen Verbraucherschutz Und Veterinärmedizin

DC:

Dendritic Cells

DEREK:

Deductive Estimation of Risk from Existing Knowledge

DNCB:

DiNitroChloroBenzene

DNFB:

1-Fluoro-2,4-dinitrobenzene

DPRA:

Direct Peptide Reactivity Assay

GPMT:

Guinea Pig Maximization Test

h-CLAT:

human Cell Line Activation Test

HE-PPD:

Hydroxyethyl-p-phenylenediamine

HRIPT:

Human Repeated Insulin Patch Test

HRP/HP:

Horseradish Peroxidase/Hydrogen Peroxide

ITS:

Integrated Testing Strategies

LC:

Langerhans Cells

LR:

Linear Regression

LLNA:

Local Lymph Node Assay

MUSST:

Myeloid U937 Skin Sensitisation Test

MULTICASE:

Multiple Computer Automated Structure Evaluation

NCHS:

National Center for Health Statistics

OECD:

Organization for Economic Cooperation and Development

PCA:

Principal Component Analysis

PTD:

p-toluylenediamine

QSAR:

Quantitative Structure Activity Relationship

QSPR:

Quantitative Structure Property Relationship

REACh:

Registration, Evaluation, Authorization of Chemicals

SAR:

Structure Activity Relationship

TIMES-SS:

TImes MEtabolism Simulator platform used for predicting Skin Sensitization

TNCB:

2,4,6-Trinitrochlorobenzene

TOPKAT:

Toxicity Prediction by Komputer Assisted Technology

References

  1. Aeby, P., T. Ashikaga, S. Bessou-Touya, A. Schepky, F. Gerberick, P. Kern, M. Marrec-Fairley, G. Maxwell, J. M. Ovigne, H. Sakaguchi, et al. Identifying and characterizing chemical skin sensitizers without animal testing: Colipa’s research and method development program. Toxicol. In Vitro 24:1465–1473, 2010.

    Google Scholar 

  2. Aeby, P., C. Wyss, H. Beck, P. Griem, H. Scheffler, and C. Goebel. Characterization of the sensitizing potential of chemicals by in vitro analysis of dendritic cell activation and skin penetration. J. Invest. Dermatol. 122:1154–1164, 2004.

    Google Scholar 

  3. Aiba, S., H. Manome, Y. Yoshino, and H. Tagami. In vitro treatment of human transforming growth factor-beta1-treated monocyte-derived dendritic cells with haptens can induce the phenotypic and functional changes similar to epidermal Langerhans cells in the initiation phase of allergic contact sensitivity reaction. Immunology 101:68–75, 2000.

    Google Scholar 

  4. Aiba, S., A. Terunuma, H. Manome, and H. Tagami. Dendritic cells differently respond to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur. J. Immunol. 27:3031–3038, 1997.

    Google Scholar 

  5. Andreas, N., B. Caroline, F. Leslie, G. Frank, N. Kimberly, H. Allison, I. Heather, L. Robert, O. Stefan, R. Hendrik, et al. The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: results of a ring-study in five laboratories. Toxicol In Vitro 2010.

  6. Antonios, D., P. Rousseau, A. Larange, S. Kerdine-Romer, and M. Pallardy. Mechanisms of IL-12 synthesis by human dendritic cells treated with the chemical sensitizer NiSO4. J. Immunol. 185:89–98, 2010.

    Google Scholar 

  7. Ashby, J., D. A. Basketter, D. Paton, and I. Kimber. Structure activity relationships in skin sensitization using the murine local lymph node assay. Toxicology 103:177–194, 1995.

    Google Scholar 

  8. Ashikaga, T., H. Sakaguchi, S. Sono, N. Kosaka, M. Ishikawa, Y. Nukada, M. Miyazawa, Y. Ito, N. Nishiyama, and H. Itagaki. A comparative evaluation of in vitro skin sensitisation tests: the human cell-line activation test (h-CLAT) versus the local lymph node assay (LLNA). Altern. Lab. Anim. 38:275–284, 2010.

    Google Scholar 

  9. Azam, P., J. L. Peiffer, D. Chamousset, M. H. Tissier, P. A. Bonnet, L. Vian, I. Fabre, and J. C. Ourlin. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol. Appl. Pharmacol. 212:14–23, 2006.

    Google Scholar 

  10. Baron, J. M., T. Wiederholt, R. Heise, H. F. Merk, and D. R. Bickers. Expression and function of cytochrome p450-dependent enzymes in human skin cells. Curr. Med. Chem. 15:2258–2264, 2008.

    Google Scholar 

  11. Basketter, D. A. Skin sensitization to cinnamic alcohol: the role of skin metabolism. Acta Derm. Venereol. 72:264–265, 1992.

    Google Scholar 

  12. Basketter, D. A. The human repeated insult patch test in the 21st century: a commentary. Cutan. Ocul. Toxicol. 28:49–53, 2009.

    Google Scholar 

  13. Basketter, D. A., L. Balikie, R. J. Dearman, I. Kimber, C. A. Ryan, G. F. Gerberick, P. Harvey, P. Evans, I. R. White, and R. J. Rycroft. Use of the local lymph node assay for the estimation of relative contact allergenic potency. Contact Dermatitis 42:344–348, 2000.

    Google Scholar 

  14. Basketter, D. A., P. Evans, R. J. Fielder, G. F. Gerberick, R. J. Dearman, and I. Kimber. Local lymph node assay—validation, conduct and use in practice. Food Chem. Toxicol. 40:593–598, 2002.

    Google Scholar 

  15. Basketter, D. A., G. F. Gerberick, I. Kimber, and S. E. Loveless. The local lymph node assay: a viable alternative to currently accepted skin sensitization tests. Food Chem. Toxicol. 34:985–997, 1996.

    Google Scholar 

  16. Basketter, D. A., N. J. Gilmour, D. Briggs, L. G. Ullmann, G. F. Gerberick, C. A. Ryan, R. J. Dearman, and I. Kimber. Utility of historical vehicle-control data in the interpretation of the local lymph node assay. Contact Dermatitis 49:37–41, 2003.

    Google Scholar 

  17. Basketter, D. A., L. J. Lea, K. Cooper, J. Stocks, A. Dickens, I. Pate, R. J. Dearman, and I. Kimber. Threshold for classification as a skin sensitizer in the local lymph node assay: a statistical evaluation. Food Chem. Toxicol. 37:1167–1174, 1999.

    Google Scholar 

  18. Bernhofer, L. P., M. Seiberg, and K. M. Martin. The influence of the response of skin equivalent systems to topically applied consumer products by epithelial–mesenchymal interactions. Toxicol. In Vitro 13:219–229, 1999.

    Google Scholar 

  19. Bhhatarai, B., and P. Gramatica. Per- and polyfluoro toxicity (LC(50) inhalation) study in rat and mouse using QSAR modeling. Chem. Res. Toxicol. 23:528–539, 2010.

    Google Scholar 

  20. Boisleve, F., S. Kerdine-Romer, N. Rougier-Larzat, and M. Pallardy. Nickel and DNCB induce CCR7 expression on human dendritic cells through different signalling pathways: role of TNF-alpha and MAPK. J. Invest. Dermatol. 123:494–502, 2004.

    Google Scholar 

  21. Bonefeld, C. M., J. M. Larsen, S. Dabelsteen, C. Geisler, I. R. White, T. Menne, and J. D. Johansen. Consumer available permanent hair dye products cause major allergic immune activation in an animal model. Br. J. Dermatol. 162:102–107, 2010.

    Google Scholar 

  22. Bontkes, H. J., J. J. Ruizendaal, D. Kramer, S. J. Santegoets, R. J. Scheper, T. D. de Gruijl, C. J. Meijer, and E. Hooijberg. Constitutively active STAT5b induces cytokine-independent growth of the acute myeloid leukemia-derived MUTZ-3 cell line and accelerates its differentiation into mature dendritic cells. J. Immunother. 29:188–200, 2006.

    Google Scholar 

  23. Buist, H. E., J. A. van Burgsteden, A. P. Freidig, W. J. Maas, and J. J. van de Sandt. New in vitro dermal absorption database and the prediction of dermal absorption under finite conditions for risk assessment purposes. Regul. Toxicol. Pharmacol. 57:200–209, 2010.

    Google Scholar 

  24. Burns, J., and D. F. Weaver. A mathematical model for prediction of drug molecule diffusion across the blood-brain barrier. Can. J. Neurol. Sci. 31:520–527, 2004.

    Google Scholar 

  25. Caux, C., J. Valladeau, M. C. Dieu, O. Ravel, B. Vanbervliet, A. Vicari, S. Saeland, and S. Lebecque. Langerhans cells have unique features illustrating selective migration, antigen uptake and routage capacities. J. Invest. Dermatol. 114:207–207, 2000.

    Google Scholar 

  26. Chao, P., T. Maguire, E. Novik, K. C. Cheng, and M. L. Yarmush. Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem. Pharmacol. 78:625–632, 2009.

    Google Scholar 

  27. Cleuvers, M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 59:309–315, 2004.

    Google Scholar 

  28. Cooper, A. E., T. Potter, and T. Luker. Prediction of efficacious inhalation lung doses via the use of in silico lung retention QSAR models and in vitro potency screens. Drug. Metab. Dispos. 38(12):2218–2225, 2010.

    Google Scholar 

  29. Coquette, A., N. Berna, A. Vandenbosch, M. Rosdy, B. De Wever, and Y. Poumay. Analysis of interleukin-1alpha (IL-1alpha) and interleukin-8 (IL-8) expression and release in in vitro reconstructed human epidermis for the prediction of in vivo skin irritation and/or sensitization. Toxicol. In Vitro 17:311–321, 2003.

    Google Scholar 

  30. Coquette, A., N. Berna, A. Vandenbosch, M. Rosdy, and Y. Poumay. Differential expression and release of cytokines by an in vitro reconstructed human epidermis following exposure to skin irritant and sensitizing chemicals. Toxicol. In Vitro 13:867–877, 1999.

    Google Scholar 

  31. Cotovio, J., M. H. Grandidier, P. Portes, R. Roguet, and G. Rubinstenn. The in vitro skin irritation of chemicals: optimisation of the EPISKIN prediction model within the framework of the ECVAM validation process. Altern. Lab. Anim. 33:329–349, 2005.

    Google Scholar 

  32. Coutant, K. D., P. Ulrich, H. Thomas, A. Cordier, and A. Brugerolle de Fraissinette. Early changes in murine epidermal cell phenotype by contact sensitizers. Toxicol. Sci. 48:74–81, 1999.

    Google Scholar 

  33. Cronin, M. T., and D. A. Basketter. Multivariate QSAR analysis of a skin sensitization database. SAR QSAR Environ. Res. 2:159–179, 1994.

    Google Scholar 

  34. del Savio, B., and E. F. Sherertz. Is allergic contact dermatitis being overlooked? Arch. Fam. Med. 3:537–543, 1994.

    Google Scholar 

  35. Devillers, J. New trends in (Q)SAR modeling with topological indices. Curr. Opin. Drug. Discov. Devel. 3:275–279, 2000.

    Google Scholar 

  36. Dietz, L., P. R. Esser, S. S. Schmucker, I. Goette, A. Richter, M. Schnolzer, S. F. Martin, and H. J. Thierse. Tracking human contact allergens: from mass spectrometric identification of peptide-bound reactive small chemicals to chemical-specific naive human T-cell priming. Toxicol. Sci. 117:336–347, 2010.

    Google Scholar 

  37. Dimitrov, S., G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlewicz, J. Niemela, and O. Mekenyan. A stepwise approach for defining the applicability domain of SAR and QSAR models. J. Chem. Inf. Model. 45:839–849, 2005.

    Google Scholar 

  38. Divkovic, M., C. K. Pease, G. F. Gerberick, and D. A. Basketter. Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Dermatitis 53:189–200, 2005.

    Google Scholar 

  39. dos Santos, G. G., J. Reinders, K. Ouwehand, T. Rustemeyer, R. J. Scheper, and S. Gibbs. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol. Appl. Pharmacol. 236:372–382, 2009.

    Google Scholar 

  40. Ebalunode, J. O., W. Zheng, and A. Tropsha. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design. Methods Mol. Biol. 685:111–133, 2011.

    Google Scholar 

  41. El-Ali, J., P. K. Sorger, and K. F. Jensen. Cells on chips. Nature 442:403–411, 2006.

    Google Scholar 

  42. Elias, P. M., E. R. Cooper, A. Korc, and B. E. Brown. Percutaneous transport in relation to stratum corneum structure and lipid composition. J. Invest. Dermatol. 76:297–301, 1981.

    Google Scholar 

  43. Enk, A. H., and S. I. Katz. Early events in the induction phase of contact sensitivity. J. Invest. Dermatol. 99:39S–41S, 1992.

    Google Scholar 

  44. Enk, A. H., and S. I. Katz. Contact sensitivity as a model for T-cell activation in skin. J. Invest. Dermatol. 105:80S–83S, 1995.

    Google Scholar 

  45. Enoch, S. J., M. T. Cronin, T. W. Schultz, and J. C. Madden. Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition. Chem. Res. Toxicol. 21:513–520, 2008.

    Google Scholar 

  46. Facy, V., V. Flouret, M. Regnier, and R. Schmidt. Langerhans cells integrated into human reconstructed epidermis respond to known sensitizers and ultraviolet exposure. J. Invest. Dermatol. 122:552–553, 2004.

    Google Scholar 

  47. Faller, C., M. Bracher, N. Dami, and R. Roguet. Predictive ability of reconstructed human epidermis equivalents for the assessment of skin irritation of cosmetics. Toxicol. In Vitro 16:557–572, 2002.

    Google Scholar 

  48. Fedorowicz, A., H. Singh, S. Soderholm, and E. Demchuk. Structure-activity models for contact sensitization. Chem. Res. Toxicol. 18:954–969, 2005.

    Google Scholar 

  49. Fedorowicz, A., L. Y. Zheng, H. Singh, and E. Demchuk. QSAR study of skin sensitization using local lymph node assay data. Int. J. Mol. Sci. 5:56–66, 2004.

    Google Scholar 

  50. Fluhr, J., and J. Lademann. Penetration properties and safety aspects of topically applied products. Skin Pharmacol. Physiol. 21:293, 2008.

    Google Scholar 

  51. Fukunaga, A., N. M. Khaskhely, C. S. Sreevidya, S. N. Byrne, and S. E. Ullrich. Dermal dendritic cells, and not Langerhans cells, play an essential role in inducing an immune response. J. Immunol. 180:3057–3064, 2008.

    Google Scholar 

  52. Galbiati, V., M. Mitjans, L. Lucchi, B. Viviani, C. L. Galli, M. Marinovich, and E. Corsini. Further development of the NCTC 2544 IL-18 assay to identify in vitro contact allergens. Toxicol In Vitro 2010.

  53. Gerberick, F., M. Aleksic, D. Basketter, S. Casati, A. T. Karlberg, P. Kern, I. Kimber, J. P. Lepoittevin, A. Natsch, J. M. Ovigne, et al. Chemical reactivity measurement and the predicitve identification of skin sensitisers. The report and recommendations of ECVAM Workshop 64. Altern. Lab. Anim. 36:215–242, 2008.

    Google Scholar 

  54. Gerberick, G. F., C. A. Ryan, R. J. Dearman, and I. Kimber. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals. Methods 41:54–60, 2007.

    Google Scholar 

  55. Gerberick, G. F., C. A. Ryan, P. S. Kern, H. Schlatter, R. J. Dearman, I. Kimber, G. Y. Patlewicz, and D. A. Basketter. Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 16:157–202, 2005.

    Google Scholar 

  56. Gerberick, G. F., J. A. Troutman, L. M. Foertsch, J. D. Vassallo, M. Quijano, R. L. Dobson, C. Goebel, and J. P. Lepoittevin. Investigation of peptide reactivity of pro-hapten skin sensitizers using a peroxidase-peroxide oxidation system. Toxicol. Sci. 112:164–174, 2009.

    Google Scholar 

  57. Gerberick, G. F., J. D. Vassallo, R. E. Bailey, J. G. Chaney, S. W. Morrall, and J. P. Lepoittevin. Development of a peptide reactivity assay for screening contact allergens. Toxicol. Sci. 81:332–343, 2004.

    Google Scholar 

  58. Gerberick, G. F., J. D. Vassallo, L. M. Foertsch, B. B. Price, J. G. Chaney, and J. P. Lepoittevin. Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol. Sci. 97:417–427, 2007.

    Google Scholar 

  59. Golla, S., S. Madihally, R. L. Robinson, Jr., and K. A. Gasem. Quantitative structure-property relationship modeling of skin sensitization: a quantitative prediction. Toxicol. In Vitro 23:454–465, 2009.

    Google Scholar 

  60. Haessler, U., Y. Kalinin, M. A. Swartz, and M. Wu. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11:827–835, 2009.

    Google Scholar 

  61. Hagvall, L., J. M. Baron, A. Borje, L. Weidolf, H. Merk, and A. T. Karlberg. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens. Toxicol. Appl. Pharmacol. 233:308–313, 2008.

    Google Scholar 

  62. Harrison, D. J., K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897, 1993.

    Google Scholar 

  63. Hill, S., A. J. Edwards, I. Kimber, and S. C. Knight. Systemic migration of dendritic cells during contact sensitization. Immunology 71:277–281, 1990.

    Google Scholar 

  64. Hulette, B. A., C. A. Ryan, and G. F. Gerberick. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol. Appl. Pharmacol. 182:226–233, 2002.

    Google Scholar 

  65. Irimia, D., G. Charras, N. Agrawal, T. Mitchison, and M. Toner. Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7:1783–1790, 2007.

    Google Scholar 

  66. Jacobs, J. J., C. L. Lehe, H. Hasegawa, G. R. Elliott, and P. K. Das. Skin irritants and contact sensitizers induce Langerhans cell migration and maturation at irritant concentration. Exp. Dermatol. 15:432–440, 2006.

    Google Scholar 

  67. Jenkinson, C., R. E. Jenkins, J. L. Maggs, N. R. Kitteringham, M. Aleksic, B. K. Park, and D. J. Naisbitt. A mechanistic investigation into the irreversible protein binding and antigenicity of p-phenylenediamine. Chem. Res. Toxicol. 22:1172–1180, 2009.

    Google Scholar 

  68. Johnson, S. R. The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J. Chem. Inform. Model. 48:25–26, 2008.

    Google Scholar 

  69. Jowsey, I. R., D. A. Basketter, C. Westmoreland, and I. Kimber. A future approach to measuring relative skin sensitising potency: a proposal. J. Appl. Toxicol. 26:341–350, 2006.

    Google Scholar 

  70. Karlberg, A. T., M. A. Bergstrom, A. Borje, K. Luthman, and J. L. Nilsson. Allergic contact dermatitis–formation, structural requirements, and reactivity of skin sensitizers. Chem. Res. Toxicol. 21:53–69, 2008.

    Google Scholar 

  71. Katritzky, A. R., A. S. Girgis, S. Slavov, S. R. Tala, and I. Stoyanova-Slavova. QSAR modeling, synthesis and bioassay of diverse leukemia RPMI-8226 cell line active agents. Eur. J. Med. Chem. 45:5183–5199, 2010.

    Google Scholar 

  72. Keenan, T. M., C. W. Frevert, A. Wu, V. Wong, and A. Folch. A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber. Lab Chip 10:116–122, 2010.

    Google Scholar 

  73. Kern, P. S., G. F. Gerberick, C. A. Ryan, I. Kimber, A. Aptula, and D. A. Basketter. Local lymph node data for the evaluation of skin sensitization alternatives: a second compilation. Dermatitis 21:8–32, 2010.

    Google Scholar 

  74. Kidambi, S., R. S. Yarmush, E. Novik, P. Chao, M. L. Yarmush, and Y. Nahmias. Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc. Natl Acad. Sci. USA. 106:15714–15719, 2009.

    Google Scholar 

  75. Kimber, I., M. Cumberbatch, R. J. Dearman, M. Bhushan, and C. E. Griffiths. Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br. J. Dermatol. 142:401–412, 2000.

    Google Scholar 

  76. Kimber, I., R. J. Dearman, M. Cumberbatch, and R. J. Huby. Langerhans cells and chemical allergy. Curr. Opin. Immunol. 10:614–619, 1998.

    Google Scholar 

  77. King, K. R., S. Wang, A. Jayaraman, M. L. Yarmush, and M. Toner. Microfluidic flow-encoded switching for parallel control of dynamic cellular microenvironments. Lab Chip 8:107–116, 2008.

    Google Scholar 

  78. Koeper, L. M., A. Schulz, H. J. Ahr, and H. W. Vohr. In vitro differentiation of skin sensitizers by cell signaling pathways. Toxicology 242:144–152, 2007.

    Google Scholar 

  79. Kremen, R. Cosmetics testing without animals. In: Technology Review, January 20, 2010 edition: MIT, 2010.

  80. Lalko, J. F., I. Kimber, R. J. Dearman, G. F. Gerberick, K. Sarlo, and A. M. Api. Chemical reactivity measurements: potential for characterization of respiratory chemical allergens. Toxicol. In Vitro 25:433–445, 2011.

    Google Scholar 

  81. Lambert, S., A. Frankart, and Y. Poumay. p38 MAPK-regulated EGFR internalization takes place in keratinocyte monolayer during stress conditions. Arch. Dermatol. Res. 302:229–233, 2010.

    Google Scholar 

  82. Lampe, M. A., A. L. Burlingame, J. Whitney, M. L. Williams, B. E. Brown, E. Roitman, and P. M. Elias. Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 24:120–130, 1983.

    Google Scholar 

  83. Landsteiner, K., and J. Jacobs. Studies on the sensitization of animals with simple chemical compounds. Ii. J. Exp. Med. 64:625–639, 1936.

    Google Scholar 

  84. Larsson, K., M. Lindstedt, and C. A. Borrebaeck. Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology 117:156–166, 2006.

    Google Scholar 

  85. Lauria, A., M. Ippolito, and A. M. Almerico. Combined use of PCA and QSAR/QSPR to predict the drugs mechanism of action. An application to the NCI ACAM database. Qsar Combinatorial Sci. 28:387–395, 2009.

    Google Scholar 

  86. Lavrijsen, A. P., J. A. Bouwstra, G. S. Gooris, A. Weerheim, H. E. Bodde, and M. Ponec. Reduced skin barrier function parallels abnormal stratum corneum lipid organization in patients with lamellar ichthyosis. J. Invest. Dermatol. 105:619–624, 1995.

    Google Scholar 

  87. Lee, H. K., Y. Alarie, and M. H. Karol. Induction of formaldehyde sensitivity in guinea pigs. Toxicol. Appl. Pharmacol. 75:147–155, 1984.

    Google Scholar 

  88. Lehe, C. L., J. J. Jacobs, C. M. Hua, P. Courtellemont, G. R. Elliott, and P. K. Das. Subtoxic concentrations of allergenic haptens induce LC migration and maturation in a human organotypic skin explant culture model: a novel method for identifying potential contact allergens. Exp. Dermatol. 15:421–431, 2006.

    Google Scholar 

  89. Lenz, A., M. Heine, G. Schuler, and N. Romani. Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Invest. 92:2587–2596, 1993.

    Google Scholar 

  90. Li Jeon, N., H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826–830, 2002.

    Google Scholar 

  91. Li, Y., D. Pan, J. Liu, P. S. Kern, G. F. Gerberick, A. J. Hopfinger, and Y. J. Tseng. Categorical QSAR models for skin sensitization based upon local lymph node assay classification measures part 2: 4D-fingerprint three-state and two-2-state logistic regression models. Toxicol. Sci. 99:532–544, 2007.

    Google Scholar 

  92. Luu-The, V., D. Duche, C. Ferraris, J. R. Meunier, J. Leclaire, and F. Labrie. Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models Episkin and full thickness model from Episkin. J. Steroid Biochem. Mol. Biol. 116:178–186, 2009.

    Google Scholar 

  93. Maguire, T. J., E. Novik, P. Chao, J. Barminko, Y. Nahmias, M. L. Yarmush, and K. C. Cheng. Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates. Curr. Drug. Metab. 10:1192–1199, 2009.

    Google Scholar 

  94. Martin, S. F., P. R. Esser, S. Schmucker, L. Dietz, D. J. Naisbitt, B. K. Park, M. Vocanson, J. F. Nicolas, M. Keller, W. J. Pichler, et al. T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell. Mol. Life Sci. 67:4171–4184, 2010.

    Google Scholar 

  95. Matos, T. J., C. B. Duarte, M. Goncalo, and M. C. Lopes. Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunol. Cell Biol. 83:607–614, 2005.

    Google Scholar 

  96. Matos, T. J., C. B. Duarte, M. Goncalo, and M. C. Lopes. DNFB activates MAPKs and upregulates CD40 in skin-derived dendritic cells. J. Dermatol. Sci. 39:113–123, 2005.

    Google Scholar 

  97. Matos, T. J., S. P. Jaleco, M. Goncalo, C. B. Duarte, and M. C. Lopes. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene. Mediators Inflamm. 2005:131–138, 2005.

    Google Scholar 

  98. Matsue, H., D. Edelbaum, D. Shalhevet, N. Mizumoto, C. Yang, M. E. Mummert, J. Oeda, H. Masayasu, and A. Takashima. Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J. Immunol. 171:3010–3018, 2003.

    Google Scholar 

  99. McNamee, P. M., A. M. Api, D. A. Basketter, G. Frank Gerberick, D. A. Gilpin, B. M. Hall, I. Jowsey, and M. K. Robinson. A review of critical factors in the conduct and interpretation of the human repeat insult patch test. Regul. Toxicol. Pharmacol. 52:24–34, 2008.

    Google Scholar 

  100. Meyvantsson, I., and D. J. Beebe. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. (Palo Alto Calif) 1:423–449, 2008.

    Google Scholar 

  101. Migdal, C., L. Foggia, M. Tailhardat, P. Courtellemont, M. Haftek, and M. Serres. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 274:1–9, 2010.

    Google Scholar 

  102. Miyazawa, M., Y. Ito, N. Kosaka, Y. Nukada, H. Sakaguchi, H. Suzuki, and N. Nishiyama. Role of TNF-alpha and extracellular ATP in THP-1 cell activation following allergen exposure. J. Toxicol. Sci. 33:71–83, 2008.

    Google Scholar 

  103. Miyazawa, M., Y. Ito, N. Kosaka, Y. Nukada, H. Sakaguchi, H. Suzuki, and N. Nishiyama. Role of MAPK signaling pathway in the activation of dendritic type cell line, THP-1, induced by DNCB and NiSO4. J. Toxicol. Sci. 33:51–59, 2008.

    Google Scholar 

  104. Moulon, C., J. Peguet-Navarro, P. Courtellemont, G. Redziniak, and D. Schmitt. In vitro primary sensitization and restimulation of hapten-specific T cells by fresh and cultured human epidermal Langerhans’ cells. Immunology 80:373–379, 1993.

    Google Scholar 

  105. Moulon, C., D. Wild, A. Dormoy, and H. U. Weltzien. MHC-dependent and -independent activation of human nickel-specific CD8+ cytotoxic T cells from allergic donors. J. Invest. Dermatol. 111:360–366, 1998.

    Google Scholar 

  106. Naik, P. K., T. Singh, and H. Singh. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models. SAR QSAR Environ. Res. 20:551–566, 2009.

    Google Scholar 

  107. Natsch, A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers—functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol. Sci. 113:284–292, 2010.

    Google Scholar 

  108. Natsch, A., and R. Emter. Skin sensitizers induce antioxidant response element dependent genes: application to the in vitro testing of the sensitization potential of chemicals. Toxicol. Sci. 102:110–119, 2008.

    Google Scholar 

  109. Natsch, A., R. Emter, and G. Ellis. Filling the concept with data: integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol. Sci. 107:106–121, 2009.

    Google Scholar 

  110. Nelissen, I., I. Selderslaghs, R. V. Heuvel, H. Witters, G. R. Verheyen, and G. Schoeters. MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers. Toxicol. In Vitro 23:1477–1481, 2009.

    Google Scholar 

  111. Netzlaff, F., C. M. Lehr, P. W. Wertz, and U. F. Schaefer. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 60:167–178, 2005.

    Google Scholar 

  112. Niederlehner, B. R., J. Cairns, Jr., and E. P. Smith. Modeling acute and chronic toxicity of nonpolar narcotic chemicals and mixtures to Ceriodaphnia dubia. Ecotoxicol. Environ. Saf. 39:136–146, 1998.

    Google Scholar 

  113. Novik, E., T. J. Maguire, P. Chao, K. C. Cheng, and M. L. Yarmush. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem. Pharmacol. 79:1036–1044, 2010.

    Google Scholar 

  114. Nukada, Y., M. Miyazawa, N. Kosaka, Y. Ito, H. Sakaguchi, and N. Nishiyama. Production of IL-8 in THP-1 cells following contact allergen stimulation via mitogen-activated protein kinase activation or tumor necrosis factor-alpha production. J. Toxicol. Sci. 33:175–185, 2008.

    Google Scholar 

  115. Osborne, R., and M. A. Perkins. An approach for development of alternative test methods based on mechanisms of skin irritation. Food Chem. Toxicol. 32:133–142, 1994.

    Google Scholar 

  116. Ott, H., T. Wiederholt, M. A. Bergstrom, R. Heise, C. Skazik, K. Czaja, Y. Marquardt, A. T. Karlberg, H. F. Merk, and J. M. Baron. High-resolution transcriptional profiling of chemical-stimulated dendritic cells identifies immunogenic contact allergens, but not prohaptens. Skin Pharmacol. Physiol. 23:213–224, 2010.

    Google Scholar 

  117. Ouwehand, K., S. J. Santegoets, D. P. Bruynzeel, R. J. Scheper, T. D. de Gruijl, and S. Gibbs. CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur. J. Immunol. 38:3050–3059, 2008.

    Google Scholar 

  118. Ouwehand, K., R. J. Scheper, T. D. de Gruijl, and S. Gibbs. Epidermis-to-dermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. Eur. J. Immunol. 40:2026–2034, 2010.

    Google Scholar 

  119. Ouwehand, K., S. W. Spiekstra, J. Reinders, R. J. Scheper, T. D. de Gruijl, and S. Gibbs. Comparison of a novel CXCL12/CCL5 dependent migration assay with CXCL8 secretion and CD86 expression for distinguishing sensitizers from non-sensitizers using MUTZ-3 Langerhans cells. Toxicol. In Vitro 24:578–585, 2010.

    Google Scholar 

  120. Patlewicz, G., A. O. Aptula, D. W. Roberts, and E. Uriarte. A minireview of available skin sensitization (Q)SARs/expert systems. Qsar Combinatorial Sci. 27:60–76, 2008.

    Google Scholar 

  121. Pichowski, J. S., M. Cumberbatch, R. J. Dearman, D. A. Basketter, and I. Kimber. Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells: inter-individual differences and relevance for sensitization testing. J. Appl. Toxicol.: JAT 21:115–121, 2001.

    Google Scholar 

  122. Piclin, N., M. Pintore, C. Wechman, A. Roncaglioni, E. Benfenati, and J. R. Chretien. Ecotoxicity prediction by adaptive fuzzy partitioning: comparing descriptors computed on 2D and 3D structures. SAR QSAR Environ. Res. 17:225–251, 2006.

    Google Scholar 

  123. Pilgram, G. S., D. C. Vissers, H. van der Meulen, S. Pavel, S. P. Lavrijsen, J. A. Bouwstra, and H. K. Koerten. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J. Invest. Dermatol. 117:710–717, 2001.

    Google Scholar 

  124. Pistoor, F. H., A. Rambukkana, M. Kroezen, J. P. Lepoittevin, J. D. Bos, M. L. Kapsenberg, and P. K. Das. Novel predictive assay for contact allergens using human skin explant cultures. Am. J. Pathol. 149:337–343, 1996.

    Google Scholar 

  125. Poumay, Y., F. Dupont, S. Marcoux, M. Leclercq-Smekens, M. Herin, and A. Coquette. A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch. Dermatol. Res. 296:203–211, 2004.

    Google Scholar 

  126. Python, F., C. Goebel, and P. Aeby. Assessment of the U937 cell line for the detection of contact allergens. Toxicol. Appl. Pharmacol. 220:113–124, 2007.

    Google Scholar 

  127. Python, F., C. Goebel, and P. Aeby. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol. Appl. Pharmacol. 239:273–283, 2009.

    Google Scholar 

  128. Quentmeier, H., A. Duschl, Z. B. Hu, B. Schnarr, M. Zaborski, and H. G. Drexler. MUTZ-3, a monocytic model cell line for interleukin-4 and lipopolysaccharide studies. Immunology 89:606–612, 1996.

    Google Scholar 

  129. Randolph, G. J., V. Angeli, and M. A. Swartz. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5:617–628, 2005.

    Google Scholar 

  130. Rasaiyaah, J., K. Yong, D. R. Katz, P. Kellam, and B. M. Chain. Dendritic cells and myeloid leukaemias: plasticity and commitment in cell differentiation. Br. J. Haematol. 138:281–290, 2007.

    Google Scholar 

  131. Reuter, H., J. Spieker, S. Gerlach, U. Engels, W. Pape, L. Kolbe, R. Schmucker, H. Wenck, W. Diembeck, K. P. Wittern, et al. In vitro detection of contact allergens: development of an optimized protocol using human peripheral blood monocyte-derived dendritic cells. Toxicol In Vitro 2010.

  132. Roach, K. L., K. R. King, B. E. Uygun, I. S. Kohane, M. L. Yarmush, and M. Toner. High throughput single cell bioinformatics. Biotechnol. Prog. 25:1772–1779, 2009.

    Google Scholar 

  133. Roberts, D. W., A. O. Aptula, G. Patlewicz, and C. Pease. Chemical reactivity indices and mechanism-based read-across for non-animal based assessment of skin sensitisation potential. J. Appl. Toxicol. 28:443–454, 2008.

    Google Scholar 

  134. Saalbach, A., C. Klein, J. Sleeman, U. Sack, F. Kauer, C. Gebhardt, M. Averbeck, U. Anderegg, and J. C. Simon. Dermal fibroblasts induce maturation of dendritic cells. J. Immunol. 178:4966–4974, 2007.

    Google Scholar 

  135. Sakaguchi, H., C. Ryan, J. M. Ovigne, K. R. Schroeder, and T. Ashikaga. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol. In Vitro 24:1810–1820, 2010.

    Google Scholar 

  136. Sandby-Moller, J., T. Poulsen, and H. C. Wulf. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 83:410–413, 2003.

    Google Scholar 

  137. Santegoets, S. J., H. J. Bontkes, A. G. Stam, F. Bhoelan, J. J. Ruizendaal, A. J. van den Eertwegh, E. Hooijberg, R. J. Scheper, and T. D. de Gruijl. Inducing antitumor T cell immunity: comparative functional analysis of interstitial versus Langerhans dendritic cells in a human cell line model. J. Immunol. 180:4540–4549, 2008.

    Google Scholar 

  138. Santegoets, S. J., A. J. Masterson, P. C. van der Sluis, S. M. Lougheed, D. M. Fluitsma, A. J. van den Eertwegh, H. M. Pinedo, R. J. Scheper, and T. D. de Gruijl. A CD34(+) human cell line model of myeloid dendritic cell differentiation: evidence for a CD14(+)CD11b(+) Langerhans cell precursor. J. Leukoc. Biol. 80:1337–1344, 2006.

    Google Scholar 

  139. Santegoets, S. J., M. W. Schreurs, A. J. Masterson, Y. P. Liu, S. Goletz, H. Baumeister, E. W. Kueter, S. M. Lougheed, A. J. van den Eertwegh, R. J. Scheper, et al. In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line. Cancer Immunol. Immunother. 55:1480–1490, 2006.

    Google Scholar 

  140. Santegoets, S. J., A. J. van den Eertwegh, A. A. van de Loosdrecht, R. J. Scheper, and T. D. de Gruijl. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J. Leukoc. Biol. 84:1364–1373, 2008.

    Google Scholar 

  141. Scandella, E., Y. Men, D. F. Legler, S. Gillessen, L. Prikler, B. Ludewig, and M. Groettrup. CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood 103:1595–1601, 2004.

    Google Scholar 

  142. Schaefer, K. Microfluidic Testing for LLNA Replacement. In: Cosmetics & Toiletries Magazine March 2010 edition, 2010.

  143. Schlede, E., W. Aberer, T. Fuchs, I. Gerner, H. Lessmann, T. Maurer, R. Rossbacher, G. Stropp, E. Wagner, and D. Kayser. Chemical substances and contact allergy—244 substances ranked according to allergenic potency. Toxicology 193:219–259, 2003.

    Google Scholar 

  144. Sin, A., K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20:338–345, 2004.

    Google Scholar 

  145. Smith, J. R., V. Kholodovych, D. Knight, W. J. Welsh, and J. Kohn. QSAR models for the analysis of bioresponse data from combinatorial libraries of biomaterials. Qsar Combinatorial Sci. 24:99–113, 2005.

    Google Scholar 

  146. Sosted, H., S. C. Rastogi, K. E. Andersen, J. D. Johansen, and T. Menne. Hair dye contact allergy: quantitative exposure assessment of selected products and clinical cases. Contact Dermatitis 50:344–348, 2004.

    Google Scholar 

  147. Sprous, D. G., R. K. Palmer, J. T. Swanson, and M. Lawless. QSAR in the pharmaceutical research setting: QSAR models for broad, large problems. Curr. Top. Med. Chem. 10:619–637, 2010.

    Google Scholar 

  148. Stejskal, V., R. Hudecek, J. Stejskal, and I. Sterzl. Diagnosis and treatment of metal-induced side-effects. Neuro. Endocrinol. Lett. 27(Suppl 1):7–16, 2006.

    Google Scholar 

  149. Steube, K. G., C. Meyer, and H. G. Drexler. Constitutive protein expression of monocyte chemotactic protein-1 (MCP-1) by myelomonocytic cell lines and regulation of the secretion by anti- and proinflammatory stimuli. Leuk. Res. 23:843–849, 1999.

    Google Scholar 

  150. Steube, K. G., C. Meyer, and H. G. Drexler. Multiple regulation of constitutive and induced interleukin 8 secretion in human myelomonocytic cell lines. Cytokine 12:1236–1239, 2000.

    Google Scholar 

  151. t Hoen, P. A., R. Out, J. N. Commandeur, N. P. Vermeulen, F. H. van Batenburg, M. Manoharan, T. J. van Berkel, E. A. Biessen, and M. K. Bijsterbosch. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu. RNA 8:1572–1583, 2002.

    Google Scholar 

  152. Takayama, S., E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides. Subcellular positioning of small molecules. Nature 411:1016, 2001.

    Google Scholar 

  153. Tietze, C., and B. Blomeke. Sensitization assays: monocyte-derived dendritic cells versus a monocytic cell line (THP-1). J. Toxicol. Environ. Health A 71:965–968, 2008.

    Google Scholar 

  154. Trompezinski, S., C. Migdal, M. Tailhardat, B. Le Varlet, P. Courtellemont, M. Haftek, and M. Serres. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: cross talk between MAPK signalling pathways. Toxicol. Appl. Pharmacol. 230:397–406, 2008.

    Google Scholar 

  155. Tuschl, H., and R. Kovac. Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol. In Vitro 15:327–331, 2001.

    Google Scholar 

  156. Tuschl, H., R. Kovac, and E. Weber. The expression of surface markers on dendritic cells as indicators for the sensitizing potential of chemicals. Toxicol. In Vitro 14:541–549, 2000.

    Google Scholar 

  157. Uter, W., C. M. de Padua, A. Pfahlberg, K. Nink, A. Schnuch, and H. Lessmann. Contact allergy to topical corticosteroids–results from the IVDK and epidemiological risk assessment. J. Dtsch. Dermatol. Ges. 7(34–41):34–42, 2009.

    Google Scholar 

  158. Valladeau, J., O. Ravel, C. Dezutter-Dambuyant, K. Moore, M. Kleijmeer, Y. Liu, V. Duvert-Frances, C. Vincent, D. Schmitt, J. Davoust, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81, 2000.

    Google Scholar 

  159. van Loveren, H., A. Cockshott, T. Gebel, U. Gundert-Remy, W. H. de Jong, J. Matheson, H. McGarry, L. Musset, M. K. Selgrade, and C. Vickers. Skin sensitization in chemical risk assessment: report of a WHO/IPCS international workshop focusing on dose-response assessment. Regul. Toxicol. Pharmacol. 50:155–199, 2008.

    Google Scholar 

  160. Vandebriel, R. J., and H. van Loveren. Non-animal sensitization testing: state-of-the-art. Crit. Rev. Toxicol. 40:389–404, 2010.

    Google Scholar 

  161. Vandebriel, R. J., F. M. Van Och, and H. van Loveren. In vitro assessment of sensitizing activity of low molecular weight compounds. Toxicol. Appl. Pharmacol. 207:142–148, 2005.

    Google Scholar 

  162. Venkatapathy, R., C. Y. Wang, R. M. Bruce, and C. Moudgal. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency. Toxicol. Appl. Pharmacol. 234:209–221, 2009.

    Google Scholar 

  163. Vital, A. L., M. Goncalo, M. T. Cruz, A. Figueiredo, C. B. Duarte, and M. Celeste Lopes. The sensitizers nickel sulfate and 2,4-dinitrofluorobenzene increase CD40 and IL-12 receptor expression in a fetal skin dendritic cell line. Biosci. Rep. 24:191–202, 2004.

    Google Scholar 

  164. Wilkes, J. G., B. S. Hass, D. A. Buzatu, L. M. Pence, J. C. Archer, R. D. Beger, L. K. Schnackenberg, M. K. Halbert, L. Jennings, and R. L. Kodell. Modeling and assaying dioxin-like biological effects for both dioxin-like and certain non-dioxin-like compounds. Toxicol. Sci. 102:187–195, 2008.

    Google Scholar 

  165. Williams, E. H., C. A. Williams, and J. D. McLeod. Identification of PDL-1 as a novel biomarker of sensitizer exposure in dendritic-like cells. Toxicol. In Vitro 24:1727–1735, 2010.

    Google Scholar 

  166. Xia, Y. N., and G. M. Whitesides. Soft lithography. Annu. Rev. Mat. Sci. 28:153–184, 1998.

    Google Scholar 

  167. Yarmush, M. L., and R. Freedman. Immune system modeling devices and methods. Patent # 20110027804A1, 2011.

  168. Yoshida, Y., H. Sakaguchi, Y. Ito, M. Okuda, and H. Suzuki. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol. In Vitro 17:221–228, 2003.

    Google Scholar 

  169. Zhang, Y. B., H. F. Lin, L. Lv, W. G. Hua, F. Tian, G. Z. Shen, Z. L. Xia, and X. P. Jin. In vitro evaluation of cutaneous allergic reaction induced by chemicals using dendritic cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 26:147–150, 2008.

    Google Scholar 

  170. Zhu, H., L. Ye, A. Richard, A. Golbraikh, F. A. Wright, I. Rusyn, and A. Tropsha. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environ. Health Perspect. 117:1257–1264, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Yarmush.

Additional information

Associate Editor Christopher S. Chen oversaw the review of this article.

Nripen S. Sharma and Rohit Jindal have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N.S., Jindal, R., Mitra, B. et al. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis. Cel. Mol. Bioeng. 5, 52–72 (2012). https://doi.org/10.1007/s12195-011-0189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0189-4

Keywords

Navigation