Skip to main content
Log in

Rational Design of an Ex Vivo Model of Thrombosis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The underlying pathogenesis of cardiovascular disease is the formation of occlusive thrombi. While many well-defined animal models recapitulate the process of intravascular thrombosis, there is a need for validated ex vivo models of occlusive thrombus formation. Using the force of gravity to provide a constant pressure gradient, we designed and validated an ex vivo model of thrombosis. Times to occlusion on a collagen matrix in our model were within the range of occlusion times observed in murine thrombosis models. Prolongation of time to occlusion in the presence of platelet αIIbβ3 antagonists or inhibitors to thrombin or activated factor X is in agreement with established mechanisms of thrombus formation. The use of this model may be expanded to characterize the mechanisms of thrombosis and to determine the efficacy of pharmacological agents designed to prevent occlusive thrombus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

TF:

Tissue factor

PBS:

Phosphate buffered saline

BSA:

Bovine serum albumin

APC:

Activated protein C

References

  1. Berny, M. A., T. C. White, E. I. Tucker, L. A. Bush-Pelc, E. Di Cera, A. Gruber, and O. J. McCarty. Thrombin mutant W215A/E217A acts as a platelet GPIb antagonist. Arterioscler. Thromb. Vasc. Biol. 28:329–334, 2008.

    Article  Google Scholar 

  2. Denis, C. V., and D. D. Wagner. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler. Thromb. Vasc. Biol. 27:728–739, 2007.

    Article  Google Scholar 

  3. Gorog, P. A new, ideal technique to monitor thrombolytic therapy. Angiology 37:99–105, 1986.

    Article  Google Scholar 

  4. Gorog, P., and A. Ahmed. Haemostatometer: a new in vitro technique for assessing haemostatic activity of blood. Thromb. Res. 34:341–357, 1984.

    Article  Google Scholar 

  5. Harker, L. A., A. B. Kelly, and S. R. Hanson. Experimental arterial thrombosis in nonhuman primates. Circulation 83:IV41–IV55, 1991.

    Google Scholar 

  6. Heemskerk, J. W., E. M. Bevers, and T. Lindhout. Platelet activation and blood coagulation. Thromb. Haemost. 88:186–193, 2002.

    Google Scholar 

  7. Kratzer, M. A., and G. V. Born. Simulation of primary haemostasis in vitro. Haemostasis 15:357–362, 1985.

    Google Scholar 

  8. McCarty, O. J., J. P. Abulencia, S. A. Mousa, and K. Konstantopoulos. Evaluation of platelet antagonists in in vitro flow models of thrombosis. Methods Mol. Med. 93:21–34, 2004.

    Google Scholar 

  9. Muga, K. M., L. G. Melton, and D. A. Gabriel. A flow dynamic technique used to assess global haemostasis. Blood Coagul. Fibrinolysis 6:73–78, 1995.

    Article  Google Scholar 

  10. Phillips, D. R., P. B. Conley, U. Sinha, and P. Andre. Therapeutic approaches in arterial thrombosis. J. Thromb. Haemost. 3:1577–1589, 2005.

    Article  Google Scholar 

  11. Renne, T., B. Nieswandt, and D. Gailani. The intrinsic pathway of coagulation is essential for thrombus stability in mice. Blood Cells Mol. Dis. 36:148–151, 2006.

    Article  Google Scholar 

  12. Renne, T., M. Pozgajova, S. Gruner, K. Schuh, H. U. Pauer, P. Burfeind, D. Gailani, and B. Nieswandt. Defective thrombus formation in mice lacking coagulation factor XII. J. Exp. Med. 202:271–281, 2005.

    Article  Google Scholar 

  13. Tucker, E. I., U. M. Marzec, T. C. White, S. Hurst, S. Rugonyi, O. J. McCarty, D. Gailani, A. Gruber, and S. R. Hanson. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 113:936–944, 2009.

    Article  Google Scholar 

  14. White, T. C., M. A. Berny, E. I. Tucker, R. T. Urbanus, P. G. De Groot, J. A. Fernandez, J. H. Griffin, A. Gruber, and O. J. McCarty. Protein C supports platelet binding and activation under flow: role of glycoprotein Ib and apolipoprotein E receptor 2. J. Thromb. Haemost. 6:995–1002, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

Supported by American Heart Association Grants 09PRE2230117 (M.A.B.), 0910025G (T.C.W.), and 09GRNT2150003 (O.J.T.M.). M.A.B. and T.C.W. are ARCS scholars; T.C.W. is a Vertex Scholar; I.A.P. is the recipient of a Johnson scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen J. T. McCarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berny, M.A., Patel, I.A., White-Adams, T.C. et al. Rational Design of an Ex Vivo Model of Thrombosis. Cel. Mol. Bioeng. 3, 187–189 (2010). https://doi.org/10.1007/s12195-010-0103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0103-5

Keywords

Navigation