Skip to main content
Log in

Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

This study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous loading, or 6 h of continuous loading per day, with all loading performed 5 days/week. All loaded groups showed significant increases in Young’s modulus after one month (vs. free swelling controls), but only loading for a continuous 3 and 6 h showed significant increases in dynamic modulus by this time point. Histological analysis showed that dynamic loading can increase cartilage oligomeric matrix protein (COMP) and collagen types II and IX, as well as prevent the formation of a fibrous capsule around the construct. Type II and IX collagen deposition increased with increased with duration of applied loading. These results point to the efficacy of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs. Furthermore, these results highlight the ability to dictate mechanical properties with variations in mechanical input parameters, and the possible importance of other cartilage matrix molecules, such as COMP, in establishing the functional material properties of engineered constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Albro, M. B., N. O. Chahine, R. Li, K. Yeager, C. T. Hung, and G. A. Ateshian. Dynamic loading of deformable porous media can induce active solute transport. J. Biomech. 41:3152–3157, 2008.

    Article  Google Scholar 

  2. Armstrong, C. G., A. S. Bahrani, and D. L. Gardner. In vitro measurement of articular cartilage deformations in the intact human hip joint under load. J. Bone Joint Surg. Am. 61:744–755, 1979.

    Google Scholar 

  3. Ateshian, G. A., and C. T. Hung. Functional properties of native articular cartilage. In: Functional Tissue Engineering, edited by F. Guilak, D. Mooney, D. Butler, and S. A. Goldstein. New York: Springer-Verlag, 2003.

    Google Scholar 

  4. Benya, P. D., and J. D. Shaffer. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224, 1982.

    Article  Google Scholar 

  5. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19:11–17, 2001.

    Article  Google Scholar 

  6. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.

    Google Scholar 

  7. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  Google Scholar 

  8. Cartwright, T., and G. P. Shah. Culture media. In: Basic Cell Culture: A Practical Approach, edited by J. M. Davis. Oxford: Oxford University, 1996, pp. 57–91.

    Google Scholar 

  9. Carver, S. E., and C. A. Heath. Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol. Bioeng. 62:166–174, 1999.

    Article  Google Scholar 

  10. Chen, H., M. Deere, J. T. Hecht, and J. Lawler. Cartilage oligomeric matrix protein is a calcium-binding protein, and a mutation in its type 3 repeats causes conformational changes. J. Biol. Chem. 275:26538–26544, 2000.

    Article  Google Scholar 

  11. Chowdhury, T. T., D. L. Bader, J. C. Shelton, and D. A. Lee. Temporal regulation of chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch. Biochem. Biophys. 417:105–111, 2003.

    Article  Google Scholar 

  12. Cook, J. L., J. M. Kreeger, J. T. Payne, and J. L. Tomlinson. Three-dimensional culture of canine articular chondrocytes on multiple transplantable substrates. Am. J. Vet. Res. 58:419–424, 1997.

    Google Scholar 

  13. Cook, J. L., N. Williams, J. M. Kreeger, J. T. Peacock, and J. L. Tomlinson. Biocompatibility of three-dimensional chondrocyte grafts in large tibial defects of rabbits. Am. J. Vet. Res. 64:12–20, 2003.

    Article  Google Scholar 

  14. Dillman, C. J. Kinematic analyses of running. Exerc. Sport Sci. Rev. 3:193–218, 1975.

    Article  Google Scholar 

  15. Dunkelman, N. S., M. P. Zimber, R. G. Lebaron, R. Pavelec, M. Kwan, and A. F. Purchio. Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol. Bioeng. 46:299–305, 1995.

    Article  Google Scholar 

  16. Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY) 12:689–693, 1994.

    Article  Google Scholar 

  17. Freed, L. E., G. Vunjak-Novakovic, and R. Langer. Cultivation of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51:257–264, 1993.

    Article  Google Scholar 

  18. Giannoni, P., M. Siegrist, E. B. Hunziker, and M. Wong. The mechanosensitivity of cartilage oligomeric matrix protein (COMP). Biorheology 40:101–109, 2003.

    Google Scholar 

  19. Gray, M. L., A. M. Pizzanelli, R. C. Lee, A. J. Grodzinsky, and D. A. Swann. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta 991:415–425, 1989.

    Google Scholar 

  20. Hall, A. C., J. P. Urban, and K. A. Gehl. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J. Orthop. Res. 9:1–10, 1991.

    Article  Google Scholar 

  21. Hecht, J. T., M. Deere, E. Putnam, W. Cole, B. Vertel, H. Chen, and J. Lawler. Characterization of cartilage oligomeric matrix protein (COMP) in human normal and pseudoachondroplasia musculoskeletal tissues. Matrix Biol. 17:269–278, 1998.

    Article  Google Scholar 

  22. Holden, P., R. S. Meadows, K. L. Chapman, M. E. Grant, K. E. Kadler, and M. D. Briggs. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J. Biol. Chem. 276:6046–6055, 2001.

    Article  Google Scholar 

  23. Hunter, C. J., J. K. Mouw, and M. E. Levenston. Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthr. Cartilage 12:117–130, 2004.

    Article  Google Scholar 

  24. Hunziker, E. B. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthr. Cartilage 7:15–28, 1999.

    Article  Google Scholar 

  25. Jurvelin, J., I. Kiviranta, A. M. Saamanen, M. Tammi, and H. J. Helminen. Indentation stiffness of young canine knee articular cartilage—influence of strenuous joint loading. J. Biomech. 23:1239–1246, 1990.

    Article  Google Scholar 

  26. Jurvelin, J., I. Kiviranta, M. Tammi, and H. J. Helminen. Effect of physical exercise on indentation stiffness of articular cartilage in the canine knee. Int. J. Sports Med. 7:106–110, 1986.

    Article  Google Scholar 

  27. Kelly, T. A., K. W. Ng, C. C. Wang, G. A. Ateshian, and C. T. Hung. Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J. Biomech. 39:1489–1497, 2006.

    Article  Google Scholar 

  28. Kelly, T. A., C. C. Wang, R. L. Mauck, G. A. Ateshian, and C. T. Hung. Role of cell-associated matrix in the development of free-swelling and dynamically loaded chondrocyte-seeded agarose gels. Biorheology 41:223–237, 2004.

    Google Scholar 

  29. Kisiday, J. D., M. Jin, M. A. DiMicco, B. Kurz, and A. J. Grodzinsky. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J. Biomech. 37:595–604, 2004.

    Article  Google Scholar 

  30. Kiviranta, I., M. Tammi, J. Jurvelin, A. M. Saamanen, and H. J. Helminen. Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J. Orthop. Res. 6:188–195, 1988.

    Article  Google Scholar 

  31. Lee, R. C., E. H. Frank, A. J. Grodzinsky, and D. K. Roylance. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties. J. Biomech. Eng. 103:280–292, 1981.

    Article  Google Scholar 

  32. Lima, E. G., L. Bian, K. W. Ng, R. L. Mauck, B. A. Byers, R. S. Tuan, G. A. Ateshian, and C. T. Hung. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr. Cartilage 15:1025–1033, 2007.

    Article  Google Scholar 

  33. Lima, E. G., R. L. Mauck, S. H. Han, S. Park, K. W. Ng, G. A. Ateshian, and C. T. Hung. Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41:577–590, 2004.

    Google Scholar 

  34. Lin, W., S. Shuster, H. I. Maibach, and R. Stern. Patterns of hyaluronan staining are modified by fixation techniques. J. Histochem. Cytochem. 45:1157–1163, 1997.

    Google Scholar 

  35. Macirowski, T., S. Tepic, and R. W. Mann. Cartilage stresses in the human hip joint. J. Biomech. Eng. 116:10–18, 1994.

    Article  Google Scholar 

  36. Mankin, H. J. The response of articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 64:460–466, 1982.

    Google Scholar 

  37. Mankin, H. J., V. C. Mow, J. A. Buckwalter, J. P. Iannotti, and A. Ratcliffe. Articular cartilage structure, composition, and function. In: Orthopaedic Basic Science. Biology and Biomechanics of the Musculoskeletal System, edited by J. A. Buckwalter, T. A. Einhorn, and S. R. Simon. Rosemont: American Academy of Orthopaedic Surgeons, 2000, pp. 443–470.

    Google Scholar 

  38. Martin, I., B. Obradovic, L. E. Freed, and G. Vunjak-Novakovic. Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann. Biomed. Eng. 27:656–662, 1999.

    Article  Google Scholar 

  39. Mauck, R. L., M. M. Ho, C. T. Hung, and G. A. Ateshian. Growth factor supplementation and dynamic hydrostatic pressurization for articular cartilage tissue engineering. Adv. Bioeng. 2003, Paper 0283.

  40. Mauck, R. L., C. T. Hung, and G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125:602–614, 2003.

    Article  Google Scholar 

  41. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  Google Scholar 

  42. Mauck, R. L., S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30:1046–1056, 2002.

    Article  Google Scholar 

  43. Mauck, R. L., C. C. Wang, E. S. Oswald, G. A. Ateshian, and C. T. Hung. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartilage 11:879–890, 2003.

    Article  Google Scholar 

  44. Ng, K. W., J. G. DeFrancis, L. E. Kugler, T. A. Kelly, M. M. Ho, C. J. O’Conor, G. A. Ateshian, and C. T. Hung. Amino acids supply in culture media is not a limiting factor in the matrix synthesis of engineered cartilage tissue. Amino Acids 35:433–438, 2008.

    Article  Google Scholar 

  45. Ng, K. W., C. C. Wang, R. L. Mauck, T. A. Kelly, N. O. Chahine, K. D. Costa, G. A. Ateshian, and C. T. Hung. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J. Orthop. Res. 23:134–141, 2005.

    Article  Google Scholar 

  46. O’Hara, B. P., J. P. Urban, and A. Maroudas. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 49:536–539, 1990.

    Article  Google Scholar 

  47. Park, S., C. T. Hung, and G. A. Ateshian. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthr. Cartilage 12:65–73, 2004.

    Article  MATH  Google Scholar 

  48. Quinn, T. M., V. Morel, and J. J. Meister. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J. Biomech. 34:1463–1469, 2001.

    Article  Google Scholar 

  49. Quinn, T. M., P. Schmid, E. B. Hunziker, and A. J. Grodzinsky. Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage. Biorheology 39:27–37, 2002.

    Google Scholar 

  50. Rosenberg, K., H. Olsson, M. Morgelin, and D. Heinegard. Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J. Biol. Chem. 273:20397–20403, 1998.

    Article  Google Scholar 

  51. Sah, R. L., J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch. Biochem. Biophys. 286:20–29, 1991.

    Article  Google Scholar 

  52. Sah, R. L., Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.

    Article  Google Scholar 

  53. Seidel, J. O., M. Pei, M. L. Gray, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 41:445–458, 2004.

    Google Scholar 

  54. Selmi, T. A., P. Verdonk, P. Chambat, F. Dubrana, J. F. Potel, L. Barnouin, and P. Neyret. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J. Bone Joint Surg. Br. 90:597–604, 2008.

    Article  Google Scholar 

  55. Setton, L. A., V. C. Mow, F. J. Muller, J. C. Pita, and D. S. Howell. Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization. Osteoarthr. Cartilage 5:1–16, 1997.

    Article  Google Scholar 

  56. Soltz, M. A., and G. A. Ateshian. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31:927–934, 1998.

    Article  Google Scholar 

  57. Thur, J., K. Rosenberg, D. P. Nitsche, T. Pihlajamaa, L. Ala-Kokko, D. Heinegard, M. Paulsson, and P. Maurer. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J. Biol. Chem. 276:6083–6092, 2001.

    Article  Google Scholar 

  58. Torzilli, P. A., R. Grigiene, C. Huang, S. M. Friedman, S. B. Doty, A. L. Boskey, and G. Lust. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30:1–9, 1997.

    Article  Google Scholar 

  59. Williamson, A. K., A. C. Chen, K. Masuda, E. J. Thonar, and R. L. Sah. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21:872–880, 2003.

    Article  Google Scholar 

  60. Wong, M., M. Ponticiello, V. Kovanen, and J. S. Jurvelin. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33:1049–1054, 2000.

    Article  Google Scholar 

  61. Wong, M., M. Siegrist, and X. Cao. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol. 18:391–399, 1999.

    Article  Google Scholar 

  62. Wu, J. J., P. E. Woods, and D. R. Eyre. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II–type IX molecular relationship and type IX to type IX bonding. J. Biol. Chem. 267:23007–23014, 1992.

    Google Scholar 

Download references

Acknowledgment

This study was supported by Grants from the National Institutes of Health (R01 AR46532, AR46568; R03 AR053668) and a pre-doctoral fellowship from the Whitaker Foundation. Special thanks to Ashby Thomas, Qiqi Cheng, and Nicole Gabriel for their technical assistance throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark T. Hung.

Additional information

Kenneth W. Ng, Robert L. Mauck, and Christopher C.-B. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K.W., Mauck, R.L., Wang, C.CB. et al. Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage. Cel. Mol. Bioeng. 2, 386–394 (2009). https://doi.org/10.1007/s12195-009-0070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0070-x

Keywords

Navigation