Skip to main content
Log in

Intracellular Flow Cytometric Measurement of Extracellular Matrix Components in Porcine Intervertebral Disc Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The objective of this study was to develop and demonstrate the utility of a novel method of evaluating intracellular levels of extracellular matrix (ECM) components in intervertebral disc (IVD) cells using flow cytometry. By using this method, this study discriminated between cell populations in porcine IVD and examined the response of IVD cells to monolayer cultures, a traditional method of cell expansion, by measuring phenotypic attributes of ECM component production. It was found that monolayer cultures affected collagen production of IVD cells while there were differences in collagen type II production between the cells isolated from the annulus fibrosus (AF) and nucleus pulposus (NP) regions of IVD. Size distributions of fresh and cultured cells were also presented while the relationships between cell size and intracellular collagen level revealed heterogeneous cell populations in AF and NP regions. Furthermore, this study showed that the intracellular collagen signals of IVD cells were significantly enhanced by the treatments of Brefeldin-A and ascorbic acid. This suggests that Brefeldin-A and ascorbic acid could be used to increase the sensitivity of flow cytometric analysis on intracellular collagen levels by maximizing collagen accumulation inside cells. Since a unique feature of the flow cytometric screening tool is the ability to discriminate between various cell populations in a single sample, the flow cytometric method developed in this study may have the potential to identify specific collagen-producing cell populations from tissues or cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson, D. G., and C. Tannoury. Molecular pathogenic factors in symptomatic disc degeneration. Spine J. 5:260S–266S, 2005.

    Article  Google Scholar 

  2. Andersson, G. B. Epidemiological features of chronic low-back pain. Lancet. 354:581–585, 1999.

    Article  Google Scholar 

  3. Andersson, G. B., H. S. An, T. R. Oegema, and L. A. Setton. Directions for future research. J Bone Joint Surg. 88:110–114, 2006.

    Article  Google Scholar 

  4. Bibby, S. R., and J. P. Urban. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur.Spine J. 13:695–701, 2004.

    Article  Google Scholar 

  5. Chelberg, M. K., G. M. Banks, D. F. Geiger, and T. R. Oegema, Jr. Identification of heterogeneous cell populations in normal human intervertebral disc. J.Anat. 186 (Pt 1):43–53, 1995.

    Google Scholar 

  6. Chen, J., W. Yan, and L. A. Setton. Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur.Spine J. 15 Suppl 3:S303-S311, 2006.

    Article  Google Scholar 

  7. Chiba, K., G. B. Andersson, K. Masuda, and E. J. Thonar. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine. 22:2885–2893, 1997.

    Article  Google Scholar 

  8. Darling, M. E., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research. 23:425–432, 2005.

    Article  Google Scholar 

  9. Ehrlich, H. P., and P. Bornstein. Microtubules in transcellular movement of procollagen. Nat.New Biol. 238:257–260, 1972.

    Google Scholar 

  10. Gaetani, P., M. L. Torre, M. Klinger, M. Faustini, F. Crovato, M. Bucco, M. Marazzi, T. Chlapanidas, D. Levi, F. Tancioni, D. Vigo, and R. Rodriguez y Baena. Adipose-derived stem cell therapy for intervertebral disc regeneration: an in vitro reconstructed tissue in alginate capsules. Tissue Eng Part A. 14:1415–1423, 2008.

    Article  Google Scholar 

  11. Goins, M. L., D. W. Wimberley, P. S. Yuan, L. N. Fitzhenry, and A. R. Vaccaro. Nucleus pulposus replacement: an emerging technology. Spine J. 5:317S–324S, 2005.

    Article  Google Scholar 

  12. Guilak, F., H. P. Ting-Beall, A. E. Baer, W. R. Trickey, G. R. Erickson, and L. A. Setton. Viscoelastic properties of intervertebral disc cells. Identification of two biomechanically distinct cell populations. Spine. 24:2475–2483, 1999.

    Article  Google Scholar 

  13. Horner, H. A., S. Roberts, R. C. Bielby, J. Menage, H. Evans, and J. P. Urban. Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine. 27:1018–1028, 2002.

    Article  Google Scholar 

  14. Huang, C.-Y., T.-Y. Yuan, A. R. Jackson, L. Hazbun, and W. Y. Gu. Effects of low glucose concentrations on oxygen consumption rates of intervertebral disc cells. Spine. 32:2063–2069, 2007.

    Article  Google Scholar 

  15. Jeffrey, J. J., and G. R. Martin. The role of ascorbic acid in the biosynthesis of collagen. I. Ascorbic acid requirement by embryonic chick tibia in tissue culture. Biochim.Biophys.Acta. 121:269–280, 1966.

    Google Scholar 

  16. Maldonado, B. A., and T. R. Oegema, Jr. Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J.Orthop.Res. 10:677–690, 1992.

    Article  Google Scholar 

  17. Masuda, K., and H. S. An. Growth factors and the intervertebral disc. Spine J. 4:330S–340S, 2004.

    Article  Google Scholar 

  18. Melrose, J., S. Smith, and P. Ghosh. Assessment of the cellular heterogeneity of the ovine intervertebral disc: comparison with synovial fibroblasts and articular chondrocytes. Eur.Spine J. 12:57–65, 2003.

    Google Scholar 

  19. Mow, V. C., and R. Huiskes. Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2005.

  20. Nerlich, A. G., E. D. Schleicher, and N. Boos. 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine. 22:2781–2795, 1997.

    Article  Google Scholar 

  21. Poiraudeau, S., I. Monteiro, P. Anract, O. Blanchard, M. Revel, and M. T. Corvol. Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals. Spine. 24:837–844, 1999.

    Article  Google Scholar 

  22. Preradovic, A., G. Kleinpeter, H. Feichtinger, E. Balaun, and W. Krugluger. Quantitation of collagen I, collagen II and aggrecan mRNA and expression of the corresponding proteins in human nucleus pulposus cells in monolayer cultures. Cell Tissue Res. 321:459–464, 2005.

    Article  Google Scholar 

  23. Rajpurohit, R., M. V. Risbud, P. Ducheyne, E. J. Vresilovic, and I. M. Shapiro. Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res. 308:401–407, 2002.

    Article  Google Scholar 

  24. Richardson, S. M., R. V. Walker, S. Parker, N. P. Rhodes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 24:707–716, 2006.

    Article  Google Scholar 

  25. Ripley, C. R., J. Fant, and R. S. Bienkowski. Brefeldin A inhibits degradation as well as production and secretion of collagen in human lung fibroblasts. J.Biol.Chem. 268:3677–3682, 1993.

    Google Scholar 

  26. Risbud, M. V., M. A. Di, A. Guttapalli, R. Seghatoleslami, V. Denaro, A. R. Vaccaro, T. J. Albert, and I. M. Shapiro. Toward an optimum system for intervertebral disc organ culture: TGF-beta 3 enhances nucleus pulposus and anulus fibrosus survival and function through modulation of TGF-beta-R expression and ERK signaling. Spine. 31:884–890, 2006.

    Article  Google Scholar 

  27. Shahdadfar, A., S. Løken, J. A. Dahl, S. H. Tunheim, P. Collas, F. P. Reinholt, L. Engebretsen, and J. E. Brinchmann. Persistence of collagen type II synthesis and secretion in rapidly proliferating human articular chondrocytes in vitro. Tissue Eng Part A. 14:1999–2007, 2008.

    Article  Google Scholar 

  28. Shapiro, H. M. Practical Flow Cytometry, 4th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2003.

  29. Walker, M. H., and D. G. Anderson. Molecular basis of intervertebral disc degeneration. Spine J. 4:158S–166S, 2004.

    Article  Google Scholar 

  30. Wang, J. Y., A. E. Baer, V. B. Kraus, and L. A. Setton. Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine. 26:1747–1751, 2001.

    Article  Google Scholar 

  31. Wang, L., G. Verbruggen, K. Almqvist, D. Elewaut, Broddelez, C., and E. Veys. Flow cytometric analysis of the human articular chondrocyte phenotype in vitro. Osteoarthritis and Cartilage. 9:73–84, 2001.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Xiaoyi Li and Ms. Liza Laquian for their assistance with cell culture. This study was supported by Grant Number AR050609 from NIH (NIAMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flagler, D.J., Huang, CY., Yuan, TY. et al. Intracellular Flow Cytometric Measurement of Extracellular Matrix Components in Porcine Intervertebral Disc Cells. Cel. Mol. Bioeng. 2, 264–273 (2009). https://doi.org/10.1007/s12195-009-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0045-y

Keywords

Navigation