Skip to main content
Log in

Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) have played essential roles in various applications, such as fundamental particle physics experiments, nuclear medicine, and environmental radiation monitoring, for several decades. Understandings their physical properties as well as present applications is indispensable for the development and future applications of these detectors. In this review, we describe the physical principles of PMTs and SiPMs and introduce various applications of these detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hertz H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann Physik. 1887;267:983–1000.

    Google Scholar 

  2. Hakkwachs W. Ueber den Einfluss des Lichtes auf electrostatisch geladene Korper. Ann Physik. 1888;269:301–12.

    Google Scholar 

  3. Elster J, Geitel H. Ueber die Electricitatserregung beim Contact verdunnter Gas mit galvanisch gluhenden Drahten. Ann Physik. 1889;273:315–29.

    Google Scholar 

  4. Austin L, Starke H. Ueber die Reflexion der Kathodenstrahlen und eine damit verbundene neue Erscheinung secundarer Emission. Ann Physik. 1902;314:271–92.

    Google Scholar 

  5. Einstein A. Zur Elektrodynamik bewgter Korper. Ann Physik. 1905;322:891–921.

    Google Scholar 

  6. Iams H, Salzberg B. The secondary emission phototube. Proc IRE. 1935;23:55–64.

    Google Scholar 

  7. Zworykin VK, Morton GA, Malter L. The secondary emission multiplier-a new electric device. Proc IRE. 1936;24:351–75.

    Google Scholar 

  8. Saveliev V, Golovin V. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures. Nucl Instrum Methods Phys Res A. 2000;442:223–9.

    CAS  Google Scholar 

  9. Golovin V, Saveliev V. Novel type of avalanche photodetector with Geiger mode operation. Nucl Instrum Methods Phys Res A. 2004;518:560–4.

    CAS  Google Scholar 

  10. Saveliev V. The recent development and study of silicon photomultiplier. Nucl Instrum Methods Phys Res A. 2004;535:528–32.

    CAS  Google Scholar 

  11. Sonnenberg H. InAsP-Cs2O, A high-efficiency infrared-photocathode. App. Phys Lett. 1970;16:245–6.

    CAS  Google Scholar 

  12. Suyama M, Nakamura K. Recent progress of photocathodes for PMTs. Proc. Sci. 2009;090:013. https://pdfs.semanticscholar.org/a8c7/f00252f15d0feaa17b6fcb5782c477e76654.pdf. Accessed 22 Feb 2021.

  13. Nakamura K, Hamana Y, Ishigami Y, Matsui T. Latest bialkali photocathode with ultra high sensitivity. Nucl Instrum Meth Phys Res A. 2010;623:276–8.

    CAS  Google Scholar 

  14. Hamamatsu Photonics K.K. official handbook Edition 3a. https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf. Accessed 1 Jan 2021.

  15. Kume H, Sawaki S, Ito M, Arisaka K, Kajita T, Nishimura A, Suzuki A. 20 inch diameter photomultiplier. Nucl Instrum Meth Phys Res. 1986;205:443–9.

    Google Scholar 

  16. Suzuki A, Mori M, Kaneyuki K, Tanimori T, Takeyuchi J, Kyushima H, Ohashi Y. Improvement of 20 in. diameter photomultiplier tube. Nucl Instrum Meth Phys Res A. 1993;329:299–313.

    Google Scholar 

  17. Aiello S, Leonora E, Grimaldi A, Leotta G, Lo Presti D, Randazzo N, Sciliberto D, Sipala V. Influence of the earth’s magnetic field on large area photomultipliers. IEEE Trans Nucl Sci. 2012;59:1259–67.

    Google Scholar 

  18. Liao DH, Liu H-B, Zhou Y-X, Luo F-J, Wang Z-M, Yang A-B, Xu M-H, Xie W, Qin Z-H. Study of TTS for a 20-inch dynode PMT. Chin Phys C. 2017;41:076001.

    Google Scholar 

  19. Choong WS. Investigation of a multi-anode microchannel plate PMT for time-of-flight PET. IEEE Trans Nucl Sci. 2010;57:2417–23.

    PubMed  PubMed Central  Google Scholar 

  20. Kume H, Koyama K, Nakatsugawa K, Suzuki S, Fatlowitz D. Ultrafast microchannel plate photomultipliers. Appl Opt. 1988;27:1170–7.

    CAS  PubMed  Google Scholar 

  21. Lehmanna A, Britting A, Eyrich W, Pizzolotto C, Teufel A, Düren M, Föhl K, Hoek M, Lu S, Schepers G, Seitz B, Sfienti C. Performance studies of microchannel plate PMTs in high magnetic fields. Nucl Instrum Meth Phys Res A. 2008;595:173–6.

    Google Scholar 

  22. Korpar S, Dolenec R, Križanc P, Pestotnik R, Stanovnik A. Study of TOF PET using Cherenkov light. Nucl Instrum Meth Phys Res A. 2011;654:532–8.

    CAS  Google Scholar 

  23. Fukasawa A, Haba J, Kageyama A, Nakazawa H, Suyama M. High speed HPD for photon counting. IEEE Trans Nucl Sci. 2008;55:758–62.

    CAS  Google Scholar 

  24. Seifert S, van Dam HT, Huizenga J, Vinke R, Dendooven P, Lohner H, Schaart DR. Simulation of silicon photomultiplier signals. IEEE Trans Nucl Sci. 2009;56:3726–33.

    Google Scholar 

  25. Marano D, Belluso M, Bonanno G, Billotta S, Grillo A, Garozzo S, Romeo G, Catalano O, La Rosa G, Sottile G, Impiombato D, Giarrusso S. Silicon photomultipliers electrical model extensive analytical analysis. IEEE Trans Nucl Sci. 2014;61:23–34.

    Google Scholar 

  26. Piemonte C, Gola A. Overview on the main parameters and technology of modern Silicon Photomultipliers. Nucl Instrum Meth Phys Res A. 2019;926:2–15.

    CAS  Google Scholar 

  27. Acerbi F, Gundacker S. Understandings and simulating SiPMs. Nucl Instrum Meth Phys Res A. 2019;926:16–35.

    CAS  Google Scholar 

  28. Gundacker S, Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon sensor. Phys Med Biol. 2020;65:17TR01.

    CAS  PubMed  Google Scholar 

  29. Green MA. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol Energy Mater Sol Cells. 2008;92:1305–10.

    CAS  Google Scholar 

  30. Zappala G, Acerbi F, Ferri A, Gola A, Paternoster G, Regazzoni V, Zorzi N, Piemonte C. Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers. J Instrum. 2016;11:P11010.

    Google Scholar 

  31. Acerbi F, Paternoster G, Capasso M, Marcante M, Mazzi A, Regazzoni V, Zorzi N, Gola A. Silicon photomultipliers: technology optimizations for ultraviolet, visible and near-infrared range. Instrum. 2019;3:1–15.

    Google Scholar 

  32. Renker D, Lorenz E. Advances in solid state photon detectors. J Instrum. 2009;4:P04004.

    Google Scholar 

  33. Ghioni M, Armellini G, Maccagnani P, Rech I, Emsley MK, Unlu MS. Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates. IEEE Photon Tech Lett. 2008;20:413–5.

    CAS  Google Scholar 

  34. Zang K, Jiang X, Huo Y, Ding X, Morea M, Chen X, Lu C-Y, Ma J, Zhou M, Xia Z, Yu Z, Kamins TH, Zhang Q, Harris JS. Silicon single-photon avalanche diodes with nanostructured light trapping. Nat Commun. 2017;8:628.

    PubMed  PubMed Central  Google Scholar 

  35. Acerbi F, Gola A, Regazzoni V, Paternoster G, Borghi G, Piemonte C, Zorzi N. Ultra-high cell-density silicon photomultipliers with high detection efficiency. Proc SPIE Adv Photon Count Tech. 2017;10(1117/12):2261966.

    Google Scholar 

  36. Mikheeva E, Claude J-B, Salomoni M, Wenger J, Lumeau J, Abdeddaim R, Ficorella A, Gola A, Paternoster G, Paganoni M, Auffray E, Lecoq P, Enoch S. CMOS-compatible all-dielectric metalens for improving pixel photodetector arrays. APL Photon. 2020;5:116105.

    CAS  Google Scholar 

  37. Dautet H, Deschamps P, Dion B, MacGregor AD, MacSween D, McIntyre RJ, Trottier C, Webb PP. Photon counting techniques with silicon avalanche photodiodes. Appl Opt. 1993;32:3894–900.

    CAS  PubMed  Google Scholar 

  38. Piemonte C, Ferri A, Gola A, Picciotto A, Pro T, Serra N, Tarolli A, Zorzi N. Development of an automatic procedure for the characterization of silicon photomultipliers. IEEE Nucl Sci Sympo Med Imaging Conference 2012, Anaheim, USA, 2012, 428–432.

  39. Gundacker S, Acerbi F, Auffray E, Ferri A, Gola A, Nemallapudi MV, Paternoster G, Piemonte C, Lecoq P. State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J Instrum. 2016;11:P08008.

    Google Scholar 

  40. Cova S, Lacaita A, Ghioni M, Ripamonti G. 20-ps timing resolution with single-photon avalanche diodes. Rev Sci Instrum. 1989;60:1104–10.

    CAS  Google Scholar 

  41. Puill V, Bazin C, Breton D, Burmistrov L, Chaumat V, Dinu N, Maalmi J, Vagnucci JF, Stocchi A. Single photoelectron timing resolution of SiPM as a function of the bias voltage, the wavelength and the temperature. Nucl Instrum Meth Phys Res A. 2012;695:354–8.

    CAS  Google Scholar 

  42. Acerbi F, Ferri A, Gola A, Cazzanelli M, Pavesi L, Zorzi N, Piemonte C. Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier. IEEE Trans Nucl Sci. 2014;61:2678–86.

    Google Scholar 

  43. Nemallapudi MV, Gundacker S, Lecoq P, Auffray E. Single photon time resolution of state of the art SiPMs. J Instrum. 2016;11:P10016.

    Google Scholar 

  44. Erdmann R, Wahl M, Kapusta P. Advanced photon counting, applications, methods, instrumentation. Springer; 2015. (ISBN 978-3-319-15635-4).

    Google Scholar 

  45. Anghinolfi F, Jarron P, Martemiyanov AN, Usenko E, Wenninger H, Williams MCS, Zichich A. NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive pate chamber. Nucl Instrum Meth Phys Res A. 2004;533:183–7.

    CAS  Google Scholar 

  46. Doroud K, Rodriguez A, Williams MCS, Yamamoto K, Zichichia A, Zuyeuski R. Systematic study of new types of Hamamatsu MPPCs read out with the NINO ASIC. Nucl Instrum Meth Phys Res A. 2014;753:149–53.

    CAS  Google Scholar 

  47. Sarasola I, Nemallapudi MV, Gundacker S, Sánchez D, Gascón D, Rato P, Marín J, Auffray E. A comparative study of the time performance between NINO and FlexToT ASICs. J Instrum. 2017;12:P04016.

    Google Scholar 

  48. Cates JW, Gundacker S, Auffray E, Lecoq P, Levin CS. Improved single photon time resolution for analog SiPMs with front end readout that reduces influence of electronic noise. Phys Med Biol. 2018;63:185022.

    PubMed  Google Scholar 

  49. Gundacker S, Turtos RM, Auffray E, Paganoni M, Lecoq P. High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET. Phys Med Biol. 2019;64:055012.

    CAS  PubMed  Google Scholar 

  50. Gundacker S, Turtos RM, Kratochwil N, Pots RN, Paganoni M, Lecoq P, Auffray E. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys Med Biol. 2020;65:025001.

    CAS  PubMed  Google Scholar 

  51. Fukuda S, et al. The Super-Kamiokande detector. Nucl Instrum Meth Phys Res A. 2003;501:418–62.

    CAS  Google Scholar 

  52. Kudenko Y. Hyper-Kamiokande. J Instrum. 2020;15:C07029.

    CAS  Google Scholar 

  53. Hyper-Kamiokande Proto-Collaboration. Hyper-Kamiokande Design Report. https://arxiv.org/abs/1805.04163.

  54. Abbasi R, et al. Calibration and characterization of the IceCube photomultiplier tube. Nucl Instrum Meth Phys Res A. 2010;618:139–52.

    CAS  Google Scholar 

  55. IceCube Neutrino Observatory. https://icecube.wisc.edu/. Accessed 13 Feb 2021.

  56. Eguchi K, (KamLAND collaboration), et al. First results from KamLAND: evidence for reactor antineutrino disappearance. Phys Rev Lett. 2003;90:021802.

    CAS  PubMed  Google Scholar 

  57. Gando A, (KamLAND collaboration), et al. Measurement of the double-beta decay half-life of 136Xe in KamLAND-Zen. Phys Rev C. 2012;85:045504.

    Google Scholar 

  58. Umehara S, et al. Search for neutrino-less double beta decay with CANDLES. Phys Procedia. 2015;61:283–8.

    CAS  Google Scholar 

  59. Kataoka J, Kishimoto A, Nishiyama T, Fujita T, Takeuchi K, Kato T, Nakamori T, Ohsuka S, Nakamura S, Hirayanagi M, Adachi S, Uchiyama T, Yamamoto K. Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays. Nucl Instrum Meth Phys Res A. 2013;732:403–7.

    CAS  Google Scholar 

  60. Kishimoto A, Kataoka J, Nishiyama T, Fujita T, Takeuchi K, Okochi H, Ogata H, Kuroshima H, Ohsuka S, Nakamura S, Hirayanagi M, Adachi S, Uchiyama T, Suzuki H. Performance and field tests of a handheld Compton camera using -D position-sensitive scintillators coupled to multi-pixel photon counter arrays. J Instrum. 2014;9:P11025.

    Google Scholar 

  61. Kagaya M, Katagiri H, Enomoto R, Hanafusa R, Hosokawa M, Ito Y, Muraishi H, Nakayama K, Sato K, Takeda T, Tanaka MM, Uchida T, Watanabe T, Yanagita S, Yoshida T, Umehara K. Development of a low-cost-high-sensitivity Compton camera using CsI(Tl) scintillators (γI). Nucl Instrum Meth Phys Res A. 2015;804:25–32.

    CAS  Google Scholar 

  62. Sato Y, Terasaka Y, Utsugi W, Kikochi H, Kiyooka H, Torii T. Radiation imaging using a compact Compton camera mounted on a crawler robot inside reactor buildings of Fukushima Daiichi Nuclear Power Station. J Nucl Sci Tech. 2019;56:801–8.

    CAS  Google Scholar 

  63. Jiang J, Shimazoe K, Nakamura Y, Takahashi H, Shikaze Y, Nishizawa Y. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J Nucl Sci Tech. 2016;53:1067–75.

    Google Scholar 

  64. Shikaze Y, et al. Filed test around Fukushima Daiichi nuclear power plant site using improved Ce:Gd3(Al, Ga)5O12 scintillator Compton camera mounted on an unmanned helicopter. J Nucl Sci Tech. 2016;53:1907–18.

    CAS  Google Scholar 

  65. Yuki Sato, Ozawa S, Terasaka Y, Kaburagi M, Tanifuji Y, Kawabata K, Miyamura HN, Izumi R, Suzuki T, Torii T. Remote radiation imaging system using a compact gamma-ray imager mounted on a multicopter drone. J Nucl Sci Tech. 2018;55:90–6.

    CAS  Google Scholar 

  66. Sato Y, Ozawa S, Terasaka Y, Minemoto K, Tamura S, Shingu K, Nemoto M, Torii T. Remote detection of radioactive hotspot using a Compton camera mounted on a moving multi-copter drone above a contaminated area in Fukushima. J Nucl Sci Tech. 2020;57:734–44.

    CAS  Google Scholar 

  67. Enoto T, Wada Y, Furuta Y, Nakazawa K, Yuasa T, Okuda K, Makishima K, Sato M, Sato Y, Nakano T, Umemoto D, Tsuchiya H. Photonuclear reactions triggered by lightning discharge. Nat. 2017;551:481–4.

    CAS  Google Scholar 

  68. Wada Y, Bowers GS, Enoto T, Kamogawa M, Nakamura Y, Morimoto T, Smith DM, Furuta Y, Nakazawa K, Yuasa T, Matsuki A, Kubo M, Tamagawa T, Makishima K, Tsuchiya H. Termination of electron acceleration in thundercloud by intracloud/intercloud discharge. Geophys Res Lett. 2018;45:5700–7.

    Google Scholar 

  69. Wada Y, Nakazawa K, Enoto T, Furuta Y, Yuasa T, Makishima K, Tsuchiya H. Photoneutron detection in lightning by gadolinium orthosilicate scintillators. Phys Rev D. 2020;101:102007.

    CAS  Google Scholar 

  70. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Elsevier; 2012.

  71. Kanno I, Takahashi M, Yamaya T, Michel M. Ter-Pogossian (1925–1996): a pioneer of positron emission tomography weighted in fast imaging and Oxygen-15 application. Radiol Phys Technol. 2020;13:1–5.

    PubMed  Google Scholar 

  72. Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. Clin Transl Image. 2019;7:139–47.

    Google Scholar 

  73. Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Phys. 2016;3:3.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Surti S, Karp JS. Update on latest advances in time-of-flight PET. Phys Med. 2020;80:251–8.

    PubMed  Google Scholar 

  75. Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58:1511–8.

    CAS  PubMed  Google Scholar 

  76. van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, Borra R, Willemsen A, Boellaard R. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60:1031–6.

    PubMed  Google Scholar 

  77. Frach T, Prescher G, Degenhardt C, de Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier—principle of operation and intrinsic detector performance. IEEE Nucl Sci Symp Conf Rec Orlando, FL, USA, 24 Oct–1 Nov 2009, 1959–1965.

  78. Rausch I, Ruiz A, Valverde-Pascual I, Cal-González J, Beyer T, Carrio I. Performance evaluation of the Vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med. 2019;60:561–7.

    PubMed  Google Scholar 

  79. Chen S, Hu P, Gu Y, Yu H, Shi H. Performance characteristics of the digital uMI550 PET/CT system according to the NEMA NU2-2018 standard. EJNMMI Phys. 2020;7:43.

    PubMed  PubMed Central  Google Scholar 

  80. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li X, Qi W, Miyahara M, Kolthammer J. Performance characterization of an SiPM-based time-of-flight Canon PET/CT scanner. J Nucl Med. 2020;60(supplement 1):14.

    Google Scholar 

  82. Ahmed AM, Tashima H, Yamaya T. Investigation of spatial resolution improvement by use of a mouth-insert detector in the helmet PET scanner. Radiol Phys Technol. 2018;11:7–12.

    PubMed  Google Scholar 

  83. Minoura N, Teramoto A, Ito A, et al. A complementary scheme for automated detection of high-uptake regions on dedicated breast PET and whole-body PET/CT. Radiol Phys Technol. 2019;12:260–7.

    PubMed  Google Scholar 

  84. Tashima H, Yoshida E, Iwao Y, Wakizaka H, Maeda T, Seki C, Kimura Y, Takado Y, Higuchi M, Suhara T, Yamashita T, Yamaya T. First prototyping of a dedicated PET system with the hemisphere detector arrangement. Phys Med Biol. 2019;64:065004.

    CAS  PubMed  Google Scholar 

  85. Lv Y, Lv X, Liu W, Judenhofer MS, Zwingenberger A, Wisner E, Berg E, McKenney S, Leung E, Spencer BA, Cherry SR, Badawi RD. Mini EXPLORER II: a prototype high-sensitivity PET/CT scanner for companion animal whole body and human brain scanning. Phys Med Biol. 2019;64:075004.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshida E, Tashima H, Nagatsu K, Tsuji AB, Kamada K, Parodi K, Yamaya T. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol. 2020;65:125013.

    CAS  PubMed  Google Scholar 

  87. Miyaoka RS, Lehnert LA. Small animal PET: a review of what we have done and where we are going. Phys Med Biol. 2020;65:24TR04.

    Google Scholar 

  88. Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network. Phys Med Biol. 2021;66:015006.

    CAS  PubMed  Google Scholar 

  89. Akamatsu G, Tashima H, Yoshida E, Wakizaka H, Iwao Y, Maeda T, Takahashi M, Yamaya T. Modified NEMA NU-2 performance evaluation methods for a brain-dedicated PET system with a hemispherical detector arrangement. Biomed Phys Eng Express. 2019;6:015012.

    PubMed  Google Scholar 

  90. Tashima H, Yoshida E, Wakizaka H, Takahashi M, Nagatsu K, Tsuji AB, Kamada K, Parodi K, Yamaya T. 3D Compton image reconstruction method for whole gamma imaging. Phys Med Biol. 2020;65:225038.

    CAS  PubMed  Google Scholar 

  91. Hasegawa T, Okamoto M, Yamada T, et al. Traceable point-like 68Ge/68Ga source with a spherically symmetric positron absorber for PET scanners. Radiol Phys Technol. 2020;13:170–6.

    PubMed  Google Scholar 

  92. Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Rad Plasma Med Sci. 2017;1:473–85.

    Google Scholar 

  93. The 10 ps challenge. https://the10ps-challenge.org/. Accessed 12 Feb 2021.

  94. Lecoq P, et al. Roadmap toward the 10 ps time-of-flight PET challenge. Phys Med Biol. 2020;65:21RM01.

    CAS  PubMed  Google Scholar 

  95. Schaart DR, Seifert S, Vinke R, van Dam HT, Dendooven P, Löhner H, Beekman FJ. LaBr 3: Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol. 2010;55:N179-189.

    PubMed  Google Scholar 

  96. Gundacker S, Auffray E, Frisch B, Jarron P, Knapitsch A, Meyer T, Pizzichemi M, Lecoq P. Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis. J Instrum. 2013;8:P07014.

    Google Scholar 

  97. Nemallapudi MV, Gundacker S, Lecoq P, Auffray E, Ferri A, Gola A, Piemonte C. Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce codoped with Ca. Phys Med Biol. 2015;60:4635–49.

    CAS  PubMed  Google Scholar 

  98. Cates JW, Lewin CS. Advances in coincidence time resolution for PET. Phys Med Biol. 2016;61:2255–64.

    CAS  PubMed  Google Scholar 

  99. Kwon SI, Gola A, Ferri A, Piemonte C, Cherry SR. Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET. Phys Med Biol. 2016;61:L38-47.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Brunner SE, Schaart DR. BGO as a hybrid scintillato /Cherenkov radiator for cost-effective time-of-flight PET. Phys Med Biol. 2017;62:4421–39.

    CAS  PubMed  Google Scholar 

  101. Ota R, Nakajima K, Ogawa I, Tamagawa Y, Shimoi H, Suyama M, Hasegawa T. Coincidence time resolution of 30 ps FWHMusing a pair of Cherenkov-radiator-integrated MCP-PMTs. Phys Med Biol. 2019;64:07LT01.

    CAS  PubMed  Google Scholar 

  102. Ota R, Nakajim K, Hasegawa T, Ogawa I, Tamagawa Y. Timing-performance evaluation of Cherenkov-based radiation detectors. Nucl Instrum Meth Phys Res A. 2019;923:1–4.

    CAS  Google Scholar 

  103. Cates JW, Lewin CS. Electronics method to advance the coincidence time resolution with bismuth germinate. Phys Med Biol. 2019;64:175016.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kratochwil N, Gundacker S, Lecoq P, Auffray E. Pushing Cherenkov PET with BGO via coincidence time resolution classification and correction. Phys Med Biol. 2020;65:115004.

    CAS  PubMed  Google Scholar 

  105. Ota R, Nakajima K, Ogawa I, Tamagawa Y, Kwon SI, Berg E, Cherry SR, Shimoi H, Hasegawa Y, Nishizawa H, Shimano K, Hasegawa T. Lead-free MCP to improve coincidence time resolution and reduce MCP direct interactions. Phys Med Biol. 2021. https://doi.org/10.1088/1361-6560/abea2c.

    Article  PubMed  Google Scholar 

  106. Usui K, Ichimaru Y, Okumura Y, et al. Dose calculation with a cone beam CT image in image-guided radiation therapy. Radiol Phys Technol. 2013;6:107–14.

    PubMed  Google Scholar 

  107. Usui K, Sasai K, Ogawa K. Effect of region extraction and assigned mass-density values on the accuracy of dose calculation with magnetic resonance-based volumetric arc therapy planning. Radiol Phys Technol. 2018;11:174–83.

    PubMed  Google Scholar 

  108. Ieko Y, Kadoya N, Kanai T, et al. The impact of 4DCT-ventilation imaging-guided proton therapy on stereotactic body radiotherapy for lung cancer. Radiol Phys Technol. 2020;13:230–7.

    PubMed  Google Scholar 

  109. Mochizuki S, Kataoka J, Koide A, Fujieda K, Maruhashi T, Kurihara T, Sueoka K, Tagawa L, Yoneyama M, Inaniwa T. High-precision Compton imaging of 4.4 MeV prompt gamma-ray toward an on-line monitor for proton therapy. Nucl Instrum Meth Phys Res A. 2019;936:43–5.

    CAS  Google Scholar 

  110. Hosokoshi H, Kataoka J, Mochizuki S, Yoneyama M, Ito S, Kiji H, Nishi F, Miyamoto S, Shima T. Development and performance verification of a 3-D position-sensitive Compton camera for imaging MeV gamma rays. Sci Rep. 2019;9:18551.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamaya T, Yoshida E, Inaniwa T, Sato S, Nakajima Y, Wakizaka H, Kokuryo D, Tsuji A, Mitsuhashi T, Kawai H, Tashima H, Nishikido F, Inadama N, Murayama H, Haneishi H, Suga M, Kinouchi S. Development of a small prototype for a proof-of-concept of OpenPET imaging. Phys Med Biol. 2011;56:1123.

    PubMed  Google Scholar 

  112. Yoshida E, Tashima H, Shinaji T, Shimizu K, Wakizaka H, Mohammadi A, Nishikido F, Yamaya T. Development of a whole-body dual ring OpenPET for in-beam PET. IEEE Trans Rad Plasma Med Sci. 2017;1:293–300.

    Google Scholar 

  113. Yamamoto S, Toshito T, Okumura S, Komori M. Luminescence imaging of water during proton-beam irradiation for range estimation. Med Phys. 2015;42(11):6498–506.

    CAS  PubMed  Google Scholar 

  114. Yamamoto S, Komori M, Akagi T, Yamashita T, Koyama S, Morishita Y, Sekihara E, Toshito T. Luminescence imaging of water during carbon-ion irradiation for range estimation. Med Phys. 2016;43:2455–63.

    CAS  PubMed  Google Scholar 

  115. Yamamoto S. Discovery of the luminescence of water during irradiation of radiation at a lower energy than the Cherenkov light threshold. Radiol Phys Technol. 2020. https://doi.org/10.1007/s12194-020-00588-x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The author is grateful to Professor Tomoyuki Hasegawa for his encouragement in writing this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Ota.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest. This article does not report any studies performed with human participants. This article does not report any studies performed with animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol Phys Technol 14, 134–148 (2021). https://doi.org/10.1007/s12194-021-00615-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-021-00615-5

Keywords

Navigation