Skip to main content

Advertisement

Log in

The effect of scan interval and bolus length on the quantitative accuracy of cerebral computed tomography perfusion analysis using a hollow-fiber phantom

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The shuttle scan technique is expected to extend scan range in cerebral computed tomography (CT) perfusion by 16- or 64-row multidetector CT (MDCT), but it may affect quantitative accuracy. This study aims to evaluate the effect of long scan interval and bolus length on the quantitative accuracy of perfusion indices using an innovative hollow-fiber phantom.We used an originally developed hollow-fiber hemodialyzer covered with polyurethane resin as a perfusion phantom. We scanned the phantom during various scan intervals (1–13 s) and bolus injection lengths (5, 10, 15, and 20 s), and evaluated cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time-to-peak (TTP). We verified the influence on measured values using a two-way analysis of variance (ANOVA). All measured CBF values were smaller than the theoretical CBF values, and all the measured MTT values were larger that the theoretical MTT values (95% confidence interval). Extended scan intervals resulted in more overestimation of MTT and more underestimation of CBF (p < 0.001). CBV is not affected by the change in scan interval (p < 0.001), and a longer bolus length improved the underestimation of CBV (p < 0.001). Extended scan intervals resulted in the loss of quantitative accuracy in MTT, even with longer bolus injection length, while quantitative CBF values were underestimated and TTP values overestimated. The CBV measurement was not affected by the change in scan interval, and a longer bolus injection improved the accuracy of these measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIF:

arterial input function

b-SVD:

block-circulant singular value decomposition

CBF:

cerebral blood flow

CBV:

cerebral blood volume

CTP:

computed tomography perfusion

MDCT:

multidetector computed tomography

MTT:

mean transit time

TCC:

tissue contrast curve

T max :

time-to-maximum

TTP:

time-to-peak

References

  1. Klotz E, König M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999;30:170–84.

    Article  CAS  PubMed  Google Scholar 

  2. Mayer TE, Hamann GF, Baranczyk J, et al. Dynamic CT perfusion imaging of acute stroke. Am J Neuroradiol. 2000;21:1441–9.

    CAS  PubMed  Google Scholar 

  3. Lev MH, Segal AZ, Farkas J, Hossain ST, Putman C, Hunter GJ, et al. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke. 2001;32:2021–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wintermark M, Reichhart M, Thiran JP, Maeder P, Chalaron M, Schnyder P, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51:417–32.

    Article  PubMed  Google Scholar 

  5. Murayama K, Katada K, Nakane M, Toyama H, Anno H, Hayakawa M, et al. Whole-brain perfusion CT performed with a prototype 256–detector row CT System: initial experience. Radiology. 2002;250:202–11.

    Article  Google Scholar 

  6. Roberts HC, Roberts TPL, Smith WS, Lee TJ, Fischbein NJ, Dillon WP. Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. Am J Neuroradiol. 2001;22:1077–80.

    CAS  PubMed  Google Scholar 

  7. Suzuki K, Morita S, Masukawa A, Machida H, Ueno E. Utility of CT perfusion with 64-row multi-detector CT for acute ischemic brain stroke. Emerg Radiol. 2011;18:95–101.

    Article  PubMed  Google Scholar 

  8. Wintermark M, Smith WS, Ko NU, Quist M, Schnyder P, Dillon WP. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. Am J Neuroradiol. 2004;25:720–9.

    PubMed  Google Scholar 

  9. Suzuki K, Hashimoto H, Okaniwa E, Iimura H, Suzaki S, Abe K, et al. Quantitative accuracy of computed tomography perfusion under low-dose conditions, measured using a hollow-fiber phantom. Jpn J Radiol. 2017;35:373–80.

    Article  PubMed  Google Scholar 

  10. Okaniwa E, Hashimoto H, Suzuki K, Iimura H, Suzaki S, Abe K, Ejima M, Sakai S. Technique and theory of hollow-fiber phantom for cerebral CT perfusion. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73:128–32.

    Article  PubMed  Google Scholar 

  11. Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50:164–74.

    Article  PubMed  Google Scholar 

  12. Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, et al. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology. 2010;254:200–9.

    Article  PubMed  Google Scholar 

  13. Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke. Part 1. Theoretic basis. Am J Neuroradiol. 2009;30:662–8.

    Article  CAS  PubMed  Google Scholar 

  14. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. Appl Physiol. 1954;6:731–44.

    Article  CAS  Google Scholar 

  15. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.

    Article  CAS  PubMed  Google Scholar 

  16. Reichenbach JR, Röther J, Jonetz-Mentzel L, Herzau M, Fiala A, Weiller C, et al. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies. Am J Neuroradiol. 1999;20:1842–50.

    CAS  PubMed  Google Scholar 

  17. Donnan GA, Baron JC, Ma H, Davis SM. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 2009;8:261–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ding B, Ling HW, Chen KM, Jiang H, Zhu YB. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology. 2006;48:773–81.

    Article  PubMed  Google Scholar 

  19. Ellika S, Jain R, Patel S, Scarpace L, Schultz LR, Rock JP, et al. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. Am J Neuroradiol. 2012;33:2038–42.

    Article  Google Scholar 

  20. Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40:469–75.

    Article  PubMed  Google Scholar 

  21. Calamante F, Christensen S, Desmond PM, Ostergaard L, Davis SM, Connelly A. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke. 2010;41:1169–74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research) Grant Number 26460733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazufumi Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human rights

This article does not contain any studies involving human participants.

Informed consent

This article does not contain any studies involving animals.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, H., Suzuki, K., Okaniwa, E. et al. The effect of scan interval and bolus length on the quantitative accuracy of cerebral computed tomography perfusion analysis using a hollow-fiber phantom. Radiol Phys Technol 11, 13–19 (2018). https://doi.org/10.1007/s12194-017-0427-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-017-0427-0

Keywords

Navigation