Skip to main content
Log in

Improvement in visualization of carotid artery uniformity using silent magnetic resonance angiography

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Three-dimensional time-of-flight magnetic resonance angiography (TOF MRA) has been widely used in clinics. TOF MRA can cause dephasing artifacts, which lead to an intraluminal signal decrease. Silent MRA is a novel imaging technique that uses arterial spin labeling to achieve an ultrashort echo time (uTE), which is expected to decrease these effects and allow for accurate assessment of the flow in blood vessels. This study quantified the accuracy of Silent MRA images for visualizing the turbulent flow in flow-phantom and in vivo studies. The vessel contrast and coefficients of variation (CVs) for Silent MRA and TOF MRA were compared using normal and stenosis phantoms. Then, we performed both types of MRA on seven healthy volunteers. In the phantom study, although the contrast in the TOF MRA images was low distal to the stenosis region and at a high flow velocity, the contrast in the Silent MRA images did not change under these conditions. Furthermore, the mean CV for Silent MRA was smaller than that for TOF MRA under stenosis conditions. In the in vivo study, the mean contrast and vessel uniformity were significantly higher for Silent MRA than for TOF MRA. Although Silent MRA has limited spatial resolution and requires additional imaging time, this method may have the potential to improve the image quality of the carotid artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heiserman JE, Drayer BP, Keller PJ, Fram EK. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology. 1992;185(3):667–73.

    Article  CAS  PubMed  Google Scholar 

  2. Korogi Y, Takahashi M, Nakagawa T, Mabuchi N, Watabe T, Shiokawa Y, et al. Intracranial vascular stenosis and occlusion: MR angiographic findings. Am J Neuroradiol. 1997;18(1):135–43.

    CAS  PubMed  Google Scholar 

  3. Sadikin C, Teng M, Chen TY, Luo CB. The current role of 1.5 T non-contrast 3D time-of-flight magnetic resonance angiography to detect intracranial steno-occlusive disease. J Formos Med Assoc. 2007;106(9):691–9.

    Article  PubMed  Google Scholar 

  4. Hirai T, Korogi Y, Ono K, Nagano M, Maruoka K, Uemura S, et al. Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. Am J Neuroradiol. 2002;23(1):93–101.

    PubMed  Google Scholar 

  5. Evans AJ, Richardson DB, Tien R, MacFall JR, Hedlund LW, Heinz ER, et al. Poststenotic signal loss in MR angiography: effects of echo time, flow compensation, and fractional echo. Am J Neuroradiol. 1993;14(3):721–9.

    CAS  PubMed  Google Scholar 

  6. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. Artifacts in maximum-intensity-projection display of MR angiograms. Am J Roentgenol. 1990;154(3):623–9.

    Article  CAS  Google Scholar 

  7. Oshinski JN, Ku DN, Pettigrew RI. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels. Magn Reson Med. 1995;33(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  8. Schmalbrock P, Yuan C, Chakeres DW, Kohli J, Pelc NJ. Volume MR angiography: methods to achieve very short echo times. Radiology. 1990;175(3):861–5.

    Article  CAS  PubMed  Google Scholar 

  9. Dixon WT, Du LN, Faul DD, Gado M, Rossnick S. Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med. 1986;3(3):454–62.

    Article  CAS  PubMed  Google Scholar 

  10. Nishimura DG, Macovski A, Pauly JM, Conolly SM. MR angiography by selective inversion recovery. Magn Reson Med. 1987;4(2):193–202.

    Article  CAS  PubMed  Google Scholar 

  11. Alibek S, Vogel M, Sun W, Winkler D, Baker CA, Burke M, et al. Acoustic noise reduction in MRI using Silent Scan: an initial experience. Diagn Interv Radiol. 2014;20(4):360–3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA. Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med. 2002;48(2):297–305.

    Article  PubMed  Google Scholar 

  13. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequence. Amsterdam: Elsevier Academic; 2004. p. 919.

    Google Scholar 

  14. Madio DP, Lowe IJ. Ultra-fast imaging using low flip angles and FIDs. Magn Reson Med. 1995;34(4):525–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Wu H, Block WF, Block WF, Turski PA, Turski PA, et al. Noncontrast-enhanced three-dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition. Magn Reson Med. 2013;69:708–15.

    Article  PubMed  Google Scholar 

  16. Nielsen HT, Gold GE, Olcott EW, Pauly JM, Nishimura DG. Ultra-short echo-time 2D time-of-flight MR angiography using a half-pulse excitation. Magn Reson Med. 1999;41(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  17. Irie R, Suzuki M, Yamamoto M, Takano N, Suga Y, Hori M, et al. Assessing blood flow in an intracranial stent: a feasibility study of MR angiography using a silent scan after stent-assisted coil embolization for anterior circulation aneurysms. Am J Neuroradiol. 2015;36(5):967–70.

    Article  CAS  PubMed  Google Scholar 

  18. Ota H, Takase K, Rikimaru H, Tsuboi M, Yamada T, Sato A, et al. Quantitative vascular measurements in arterial occlusive disease. Radiographics. 2005;25(5):1141–58.

    Article  PubMed  Google Scholar 

  19. Nederkoorn PJ, van der Graaf Y, Eikelboom BC, van der Lugt A, Bartels LW, Mali WPTM. Time-of-flight MR angiography of carotid artery stenosis: does a flow void represent severe stenosis? Am J Neuroradiol. 2002;23(10):1779–84.

    PubMed  Google Scholar 

  20. Koktzoglou I, Giri S, Piccini D, Grodzki DM, Flanagan O, Murphy IG, et al. Arterial spin labeled carotid MR angiography: a phantom study examining the impact of technical and hemodynamic factors. Magn Reson Med. 2016;75(1):295–301.

    Article  PubMed  Google Scholar 

  21. Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med. 2004;52(3):679–82.

    Article  PubMed  Google Scholar 

  22. Godzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med. 2012;67(2):510–8.

    Article  Google Scholar 

  23. Prince MR. Gadolinium-enhanced MR aortography. Radiology. 1994;191(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  24. Jäger HR, Ellamushi H, Moore EA, Grieve JP, Kitchen ND, Taylor WJ. Contrast-enhanced MR angiography of intracranial giant aneurysms. Am J Neuroradiol. 2000;21(10):1900–7.

    PubMed  Google Scholar 

  25. Nael K, Villablanca JP, Saleh R, Pope W, Nael A, Laub G, et al. Contrast-enhanced MR angiography at 3T in the evaluation of intracranial aneurysms: a comparison with time-of-flight MR angiography. Am J Neuroradiol. 2006;27(10):2118–21.

    CAS  PubMed  Google Scholar 

  26. Nederkoorn PJ, Elgersma OEH, van der Graaf Y, Eikelboom BC, Kappelle LJ, Mali WPTM. Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis. Radiology. 2003;228(3):677–82.

    Article  PubMed  Google Scholar 

  27. Gatenby JC, McCauley TR, Gore JC. Mechanisms of signal loss in magnetic resonance imaging of stenoses. Med Phys. 1993;20(4):1049–57.

    Article  CAS  PubMed  Google Scholar 

  28. Ståhlberg F, Ericsson A, Nordell B, Thomsen C, Henriksen O, Persson BR. MR imaging, flow and motion. Acta Radiol. 1992;33(3):179–200.

    Article  PubMed  Google Scholar 

  29. Hahn EL. Detection of sea-water motion by nuclear precession. J Geophys Res. 1960;65(2):776–7.

    Article  Google Scholar 

  30. Drangova M, Pelc NJ. Artifacts and signal loss due to flow in the presence of B0 inhomogeneity. Magn Reson Med. 1996;35(1):126–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yoshiyuki Ishimori, PhD for his useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Fujiwara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, Y., Muranaka, Y. Improvement in visualization of carotid artery uniformity using silent magnetic resonance angiography. Radiol Phys Technol 10, 113–120 (2017). https://doi.org/10.1007/s12194-016-0375-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0375-0

Keywords

Navigation