Skip to main content

Advertisement

Log in

A formulation of cell surviving fraction after radiation exposure

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Local energy transfer from electrons generated in biotissues that are exposed to ionizing radiation is fundamental to cell damage. Our aim in this investigation was to quantify the probability of cell mortality associated with the damage by electrons and the repair processes in the cell nucleus, envisaging a new interpretation of the cell surviving fraction (SF). We introduced a SF formula for cells exposed to X-rays, which is given as a linear combination of the Poisson distributions about the number of long-lived lesions per nucleus and their “non-lethal probabilities”, to show the non-linearity of log SF as a function of dose. The model selection was rated by a statistical index, Akaike’s information criterion (AIC). It was shown that the new formula is suitable for describing cell survival and explicitly takes account of the non-lethality in damage-processing pathways of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Kim YK. Energy distribution of secondary electrons. I Consistency of experimental data. Radiat Res. 1975;61:21–35.

    Article  CAS  PubMed  Google Scholar 

  2. Hamm RN, Wright HA, Katz R, Turner JE, Ritchie RH. Calculated yields and slowing-down spectra for electrons in liquid water: implications for electron and photon RBE. Phys Med Biol. 1978;23:1149–61.

    Article  CAS  PubMed  Google Scholar 

  3. Turner JE, Magee JL, Wright HA, Chatterjee A, Hamm RN, Ritchie RH. Physical and chemical development of electron tracks in liquid water. Radiat Res. 1983;96:437–49.

    Article  CAS  Google Scholar 

  4. Paretzke H, Goodhead D, Kaplan I, Terrissol M. Track structure quantities. IAEA-TECDOC. 1995;799:633–721.

    Google Scholar 

  5. Grosswendt B. Formation of ionization clusters in nanometric structures of propane-based tissue-equivalent gas or liquid water by electrons and alpha-particles. Radiat Environ Biophys. 2002;41:103–12. doi:10.1007/s00411-002-0155-6.

    CAS  PubMed  Google Scholar 

  6. Cornforth MN, Bedford JS. A quantitative comparison of potentially lethal damage repair and the rejoining of interphase chromosome breaks in low passage normal human-fibroblasts. Radiat Res. 1987;111:385–405.

    Article  CAS  PubMed  Google Scholar 

  7. Kellerer AM. A generalized formulation of microdosimetric quantities. Radiat Prot Dosimet. 1990;31:9–16.

    CAS  Google Scholar 

  8. Rossi HH, Zaider M. Elements of microdosimetry. Med Phys. 1991;18:1085–92.

    Article  CAS  PubMed  Google Scholar 

  9. Harder D, Virsikpeuckert RP, Bartels ER. Theory of intratrack pairwise lesion interaction. Radiat Prot Dosimet. 1994;52:13–6.

    CAS  Google Scholar 

  10. Rossi HH. Geometric domains in cellular radiobiology. Radiat Prot Dosimet. 1994;52:9–12.

    CAS  Google Scholar 

  11. Elsasser T, Scholz M. Improvement of the local effect model (LEM)—implications of clustered DNA damage. Radiat Prot Dosimet. 2006;122:475–7. doi:10.1093/Rpd/Ncl521.

    Article  Google Scholar 

  12. Elsasser T, Scholz M. Cluster effects within the local effect model. Radiat Res. 2007;167:319–29.

    Article  PubMed  Google Scholar 

  13. Friedland W, Jacob P, Paretzke HG, Stork T. Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Radiat Res. 1998;150:170–82.

    Article  CAS  PubMed  Google Scholar 

  14. Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta F. Track-structure codes in radiation research. Radiat Measur. 2006;41:1052–74.

    Article  CAS  Google Scholar 

  15. Grosswendt B, Pszona S. The track structure of alpha-particles from the point of view of ionization-cluster formation in “nanometric” volumes of nitrogen. Radiat Environ Biophys. 2002;41:91–102.

    CAS  PubMed  Google Scholar 

  16. Aydogan B, Marshall DT, Swarts SG, Turner JE, Boone AJ, Richards NG, Bolch WE. Site-specific OH attack to the sugar moiety of DNA: a comparison of experimental data and computational simulation. Radiat Res. 2002;157:38–44.

    Article  CAS  PubMed  Google Scholar 

  17. Grosswendt B. Nanodosimetry, from radiation physics to radiation biology. Radiat Prot Dosimetry. 2005;115:1–9. doi:10.1093/rpd/nci152.

    Article  CAS  PubMed  Google Scholar 

  18. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  CAS  PubMed  Google Scholar 

  19. Bekker-Jensen S, Lukas C, Melander F, Bartek J, Lukas J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J Cell Biol. 2005;170:201–11.

    Article  CAS  PubMed  Google Scholar 

  20. Pryde F, Khalili S, Robertson K, Selfridge J, Ritchie AM, Melton DW, Jullien D, Adachi Y. 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J Cell Sci. 2005;118:2043–55. doi:10.1242/Jcs.02336.

    Article  CAS  PubMed  Google Scholar 

  21. Ugenskiene R, Prise K, Folkard M, Lekki J, Stachura Z, Zazula M, Stachura J. Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. Int J Radiat Biol. 2009;85:872–82. doi:10.3109/09553000903072462.

    CAS  PubMed  Google Scholar 

  22. Beyreuther E, Lessmann E, Pawelke J, Pieck S. DNA double-strand break signalling: X-ray energy dependence of residual co-localised foci of gamma-H2AX and 53BP1. Int J Radiat Biol. 2009;85:1042–50. doi:10.3109/09553000903232884.

    Article  CAS  PubMed  Google Scholar 

  23. Leatherbarrow EL, Harper JV, Cucinotta FA, O’Neill P. Induction and quantification of gamma-H2AX foci following low and high LET-irradiation. Int J Radiat Biol. 2006;82:111–8. doi:10.1080/09553000600599783.

    Article  CAS  PubMed  Google Scholar 

  24. Kato TA, Nagasawa H, Weil MM, Genik PC, Little JB, Bedford JS. gamma-H2AX foci after low-dose-rate irradiation reveal Atm haploinsufficiency in mice. Radiat Res. 2006;166:47–54.

    Article  CAS  PubMed  Google Scholar 

  25. Bhogal N, Jalali F, Bristow RG. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol. 2009;85:732–46. doi:10.1080/09553000902785791.

    Article  CAS  PubMed  Google Scholar 

  26. Anderson JA, Harper JV, Cucinotta FA, O’Neill P. Participation of DNA-PKcs in DSB repair after exposure to high- and low-LET radiation. Radiat Res. 2010;174:195–205. doi:10.1667/RR2071.1.

    Article  CAS  PubMed  Google Scholar 

  27. Chadwick KH, Leenhouts HP. A molecular theory of cell survival. Phys Med Biol. 1973;18:78–87.

    Article  CAS  PubMed  Google Scholar 

  28. Kellerer AM, Rossi HH. A generalized formulation of dual radiation action. Radiat Res. 1978;75:471–88.

    Article  Google Scholar 

  29. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62:679–94.

    Article  CAS  PubMed  Google Scholar 

  30. Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Lippincott Williams and Wilkins; 2005.

  31. Little MP, Hoel DG, Molitor J, Boice JD, Wakeford R, Muirhead CR. New models for evaluation of radiation-induced lifetime cancer risk and its uncertainty employed in the UNSCEAR 2006 report. Radiat Res. 2008;169:660–76.

    Article  CAS  PubMed  Google Scholar 

  32. Iliakis G. Radiation-induced potentially lethal damage: DNA lesions susceptible to fixation. Int J Radiat Biol. 1988;53:541–84.

    Article  CAS  Google Scholar 

  33. Tobias CA. The repair misrepair model in radiobiology: comparison to other models. Radiat Res. 1985;104:S77–95.

    Article  Google Scholar 

  34. Curtis SB. Lethal and potentially lethal lesions induced by radiation—a unified repair model. Radiat Res. 1986;106:252–70.

    Article  CAS  PubMed  Google Scholar 

  35. Hawkins RB. A statistical-theory of cell-killing by radiation of varying linear-energy-transfer. Radiat Res. 1994;140:366–74.

    Article  CAS  PubMed  Google Scholar 

  36. Stenerlow B, Hoglund E, Carlsson J, Blomquist E. Rejoining of DNA fragments produced by radiations of different linear energy transfer. Int J Radiat Biol. 2000;76:549–57.

    Article  CAS  PubMed  Google Scholar 

  37. Karlsson KH, Radulescu I, Rydberg B, Stenerlow B. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 and PARP. Radiat Res. 2008;169:506–12. doi:10.1667/RR1076.1.

    Article  CAS  PubMed  Google Scholar 

  38. Cucinotta FA, Pluth JM, Anderson JA, Harper JV, O’Neill P. Biochemical kinetics model of DSB repair and induction of gamma-H2AX foci by non-homologous end joining. Radiat Res. 2008;169:214–22. doi:10.1667/RR1035.1.

    Article  CAS  PubMed  Google Scholar 

  39. Rothkamm K, Horn S. γ-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita. 2009;45:265–71.

    CAS  PubMed  Google Scholar 

  40. Sontag W. Comparison of six different models describing survival of mammalian cells after irradiation. Radiat Environ Biophys. 1990;29:185–201.

    Article  CAS  PubMed  Google Scholar 

  41. Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol. 1997;72:351–74.

    Article  CAS  PubMed  Google Scholar 

  42. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, editors. Proceedings of the seond international symposiumu on information theory. Budapest: Academiai Kiado; 1973. p. 267–281.

  43. Puck TT, Marcus PI. Action of X-rays on mammalian cells. J Exp Med. 1956;103:653–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tobias CA, Blakely EA, Ngo FQH, Yang TCH. The repair-misrepair model of cell survival. In: Meyn RE, Withers HR, editors. Radiation Biology in Cancer Research; 1980. p. 195–230.

  45. Metting N, Braby L, Roesch W, Nelson J. Dose-rate evidence for two kinds of radiation damage in stationary-phase mammalian cells. Radiat Res. 1985;103:204–18.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia LM, Leblanc J, Wilkins D, Raaphorst GP. Fitting the linear-quadratic model to detailed data sets for different dose ranges. Phys Med Biol. 2006;51:2813–23. doi:10.1088/0031-9155/51/11/009.

    Article  CAS  PubMed  Google Scholar 

  47. Fowler J. Differences in survival curve shapes for formal multi-target and multi-hit models. Phys Med Biol. 1964;9:177.

    Article  Google Scholar 

  48. Kundrat P. Detailed probabilistic modelling of cell inactivation by ionizing radiations of different qualities: the model and its applications. Appl Radiat Isot. 2009;67:399–401. doi:10.1016/j.apradiso.2008.06.014.

    Article  CAS  PubMed  Google Scholar 

  49. Kundrat P, Lokajicek M, Hromcikova H. Probabilistic two-stage model of cell inactivation by ionizing particles. Phys Med Biol. 2005;50:1433–47. doi:10.1088/0031-9155/50/7/007.

    Article  CAS  PubMed  Google Scholar 

  50. Astrahan M. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys. 2008;35:4161–72. doi:10.1118/1.2969065.

    Article  PubMed  Google Scholar 

  51. Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–3. doi:10.1016/j.semradonc.2008.04.005.

    Article  PubMed  Google Scholar 

  52. Park C, Papies L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof M. Mizuta, Prof. H. Shirato, Dr K. Tsutsumi, and Y. Ohtsubo for valuable discussions. This work was supported financially by a Grant-in-Aid for Scientific Research in Japan.

Conflict of interest

Any actual or potential conflicts of interest do not exist for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Date.

About this article

Cite this article

Date, H., Wakui, K., Sasaki, K. et al. A formulation of cell surviving fraction after radiation exposure. Radiol Phys Technol 7, 148–157 (2014). https://doi.org/10.1007/s12194-013-0244-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-013-0244-z

Keywords

Navigation