Skip to main content
Log in

Three-dimensional motion study of femur, tibia, and patella at the knee joint from bi-plane fluoroscopy and CT images

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

In diagnosis and treatment of knee joint diseases, it is effective to study the three-dimensional (3D) motion of the patient’s knee joint involving the femur, tibia, and patella. A 2D/3D registration method with use of fluoroscopy and CT images is promising for this purpose. However, there is no report showing whether the dynamic 3D motion of the patella can be obtained. In this study, we tried to examine dynamic 3D motion of the knee joint which included the patella. First, in order to investigate the accuracy of the position estimation, we conducted an experiment on a pig knee joint which had several fiducial markers placed on it, and we found that errors in the estimation of rotation and translation were less than 1 mm and 1 deg. We then carried out an image-acquisition experiment with healthy knee joints of three volunteers and confirmed that 3D motions of the femur, tibia, and patella were successfully obtained for all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koga Y, editor. Osteoarthritis of the knee: epidemiology, biomechanics and conservative treatment. Nankodo, Tokyo; 2008. p. 2–15 (in Japanese).

  2. Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43(6):638–49.

    Article  CAS  Google Scholar 

  3. Watanabe T, Yamazaki T, Sugamoto K, Tomita T, Hashimoto H, Maeda D, et al. In vivo kinematics of mobile-bearing knee arthroplasty in deep knee bending motion. J Orthop Res. 2004;22:1044–9.

    Article  Google Scholar 

  4. Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Maeda D, et al. Development of three-dimensional kinematic analysis system for artificial knee implants using X-ray fluoroscopic imaging. Jpn J Radiol Tech. 2005;61(1):79–87 (in Japanese).

    Google Scholar 

  5. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Med Imag. 2003;22(12):1561–74.

    Article  Google Scholar 

  6. Bingham J, Li G. An optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng. 2006;128(4):588–95.

    Article  Google Scholar 

  7. Yamazaki T, Watanabe T, Tomita T, Sugamoto K, Ogasawara M, Sato Y, et al. 3D kinematics of normal knee using X-ray fluoroscopy and CT images. Proc IFMBE. 2007;14:2793–6.

    Article  Google Scholar 

  8. Rahman H, Fregly BJ, Banks SA. Accurate measurement of three-dimensional natural knee kinematics using single-plane fluoroscopy. Abstract for 2003 Summer Bioeng Conf. 2003. http://www.tulane.edu/~sbc2003/pdfdocs/0465.pdf.

  9. Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Can magnetic resonance imaging-derived bone model be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res. 2007;25(7):867–72.

    Article  Google Scholar 

  10. Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  Google Scholar 

  11. Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–66.

    Article  Google Scholar 

  12. Haneishi H, Fujita S, Kohno T, Suzuki M, Miyagi J, Moriya H. Estimation of three-dimensional knee joint movement using bi-plane X-ray fluoroscopy and 3D-CT. Proc SPIE. 2005;5747:1667–73.

    Article  Google Scholar 

  13. Moro-oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26(4):428–34.

    Article  Google Scholar 

  14. Li G, Papannagari R, Nha KW, DeFrate LE, Gill TJ, Rubash HE. The coupled motion of the femur and patella during in vivo weightbearing knee flexion. J Biomech Eng. 2007;129(6):937–43.

    Article  Google Scholar 

  15. Nha KW, Papannagari R, Gill TJ, Van de Velde SK, Freiberg AA, Rubash HE, et al. In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res. 2008;26(8):1067–74.

    Article  Google Scholar 

  16. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. 2nd ed. Cambridge: Cambridge Univ Press; 1992. p. 412–9.

    Google Scholar 

  17. Gonzalez RC, Woods RE. Digital image processing. 2nd ed. New Jersey: Prentice Hall; 2002. p. 613–5.

    Google Scholar 

  18. Lacroute P, Levey M. Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Proceedings of SIGGRAPH ’94; 1994. p. 451–8.

  19. Mori S, Kobayashi M, Kumagai M, Minohara S. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy. Radiol Phys Technol. 2009;2(1):40–5.

    Article  Google Scholar 

  20. Sharma G, editor. Digital color imaging handbook. Boca Raton: CRC Press; 2003. p. 696.

    Google Scholar 

  21. Penney GP, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ. A comparison of similarity measures for use in 2D–3D medical image registration. IEEE Med Imag. 1998;17(4):586–95.

    Article  CAS  Google Scholar 

  22. NVIDIA Corp.: CUDA download webpage. http://developer.nvidia.com/object/cuda.html. Accessed 16 Nov 2008.

  23. Ohnishi T, Doi A, Ito F, Suzuki M, Haneishi H. Acceleration of three dimensional information acquisition of a knee joint using CUDA. IEICE MI2007. 2008;135:397–400 (in Japanese).

    Google Scholar 

  24. Weese J, Penney GP, Desmedt P, Buzug TM, Hill DLG, Hawkes DJ. Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery. IEEE Trans Inf Tech Biomed. 1997;1(4):284–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Suzuken Memorial Foundation and the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Haneishi.

About this article

Cite this article

Ohnishi, T., Suzuki, M., Nawata, A. et al. Three-dimensional motion study of femur, tibia, and patella at the knee joint from bi-plane fluoroscopy and CT images. Radiol Phys Technol 3, 151–158 (2010). https://doi.org/10.1007/s12194-010-0090-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-010-0090-1

Keywords

Navigation